Creep Performance of Geosynthetic Reinforcements
Abstract
Most geosynthetic materials exhibit rheological properties that lead to creep strain response when subjected to sustained loads, and consequently it is necessary to evaluate their long-term creep deformation before any real application. This paper presents the results of sustained loading tests conducted on large-scale geogrid soil reinforcement. The purpose of these laboratory tests was to identify the appropriate design parameters for geosynthetic-reinforced systems. The results of these tests demonstrate the continuous creep deformation characteristic of geogrid materials under constant sustained loading. The increase in the applied load led to a continuous increase in the amount and rate of the geogrid creep deformation. The data analysis method used in this investigation enabled the possibility of predicting the load-deformation-time behavior and the ultimate load of geosynthetic reinforcements.
Keywords:
soil reinforcement, geosynthetics, geogrid, creepDownloads
References
A. Sawicki, "A Basis for Modelling Creep and Stress Relaxation Behaviour of Geogrids," Geosynthetics International, vol. 5, no. 6, pp. 637-645, Jan. 1998. DOI: https://doi.org/10.1680/gein.5.0139
H. Yoo, H.-Y. Jeon, and Y.-C. Chang, "Evaluation of Engineering Properties of Geogrids for Soil Retaining Walls," Textile Research Journal, vol. 80, no. 2, pp. 184-192, Jan. 2010. DOI: https://doi.org/10.1177/0040517508093442
R. J. Bathurst, B.-Q. Huang, and T. m. Allen, "Interpretation of laboratory creep testing for reliability-based analysis and load and resistance factor design (LRFD) calibration," Geosynthetics International, vol. 19, no. 1, pp. 39-53, Feb. 2012. DOI: https://doi.org/10.1680/gein.2012.19.1.39
M. Touahmia, "Performance of Geosynthetic-Reinforced Soils Under Static and Cyclic Loading," Engineering, Technology & Applied Science Research, vol. 7, no. 2, pp. 1523-1527, Apr. 2017. DOI: https://doi.org/10.48084/etasr.1035
ASTM D5262 - 07(2016), Test Method for Evaluating the Unconfined Tension Creep and Creep Rupture Behavior of Geosynthetics. West Conshohocken, PA: ASTM International, 2016.
ASTM D6637 / D6637M-15, Standard Test Method for Determining Tensile Properties of Geogrids by the Single or Multi-Rib Tensile Method,. West Conshohocken, PA: ASTM International, 2015.
J. G. Zornberg, B. R. Byler, and J. W. Knudsen, "Creep of Geotextiles Using Time-Temperature Superposition Methods," Journal of Geotechnical and Geoenvironmental Engineering, vol. 130, no. 11, pp. 1158-1168, Nov. 2004. DOI: https://doi.org/10.1061/(ASCE)1090-0241(2004)130:11(1158)
C. J. F. P. Jones and D. Clarke, "The residual strength of geosynthetic reinforcement subjected to accelerated creep testing and simulated seismic events," Geotextiles and Geomembranes, vol. 25, no. 3, pp. 155-169, Jun. 2007.
F. Franca and B. Bueno, "Creep behavior of geosynthetics using confined-accelerated tests," Geosynthetics International, vol. 18, pp. 242-254, Oct. 2011. DOI: https://doi.org/10.1680/gein.2011.18.5.242
J. Wesseloo, A. T. Visser, and E. Rust, "A mathematical model for the strain-rate dependent stress-strain response of HDPE geomembranes," Geotextiles and Geomembranes, vol. 22, no. 4, pp. 273-295, Aug. 2004. DOI: https://doi.org/10.1016/j.geotexmem.2004.02.002
R. J. Bathurst and V. N. Kaliakin, "Review of Numerical Models for Geosynthetics in Reinforcement Applications," presented at the Computer Methods and Advances in Geomechanics: 11th International Conference of the International Association for Computer Methods and Advances in Geomechanics, Torino, Italy, Jun. 2005, vol. 4, pp. 407-416.
M. Touahmia, A. Rouili, M. Boukendakdji, and B. Achour, "Experimental and Numerical Analysis of Geogrid-Reinforced Soil Systems," Arabian Journal for Science and Engineering, vol. 43, no. 10, pp. 5295-5303, Oct. 2018. DOI: https://doi.org/10.1007/s13369-018-3158-6
B. F. G. Tano, G. Stoltz, N. Touze-Foltz, D. Dias, and F. Olivier, "A numerical modelling technique for geosynthetics validated on a cavity model test," Geotextiles and Geomembranes, vol. 45, no. 4, pp. 339-349, Aug. 2017. DOI: https://doi.org/10.1016/j.geotexmem.2017.04.006
A. Lazizi, H. Trouzine, A. Asroun, and F. Belabdelouhab, "Numerical Simulation of Tire Reinforced Sand behind Retaining Wall Under Earthquake Excitation," Engineering, Technology & Applied Science Research, vol. 4, no. 2, pp. 605-611, Apr. 2014. DOI: https://doi.org/10.48084/etasr.427
ASTM D6706-01(2013), Test Method for Measuring Geosynthetic Pullout Resistance in Soil. West Conshohocken, PA: ASTM International, 2013.
M. Touahmia, "Laboratory performance of steel mechanically stabilized earth reinforcements," International Journal of Geotechnical Engineering, Nov. 2018. DOI: https://doi.org/10.1080/19386362.2018.1546943
C. M. L. Costa, J. G. Zornberg, B. de S. Bueno, and Y. D. J. Costa, "Centrifuge evaluation of the time-dependent behavior of geotextile-reinforced soil walls," Geotextiles and Geomembranes, vol. 44, no. 2, pp. 188-200, Apr. 2016. DOI: https://doi.org/10.1016/j.geotexmem.2015.09.001
DIN 4125, "Ground Anchorages: Design, Construction and Testing: Deutsche Norm," Beuth Verlag, 1990
Downloads
How to Cite
License
Copyright (c) 2020 Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after its publication in ETASR with an acknowledgement of its initial publication in this journal.