Review of Inpainting Algorithms for Wireless Communication Application

Authors

  • V. Yatnalli Electronics and Communication Engineering Department, JSS Academy of Technical Education, India
  • B. G. Shivaleelavathi Electronics and Communication Engineering Department, JSS Academy of Technical Education, India
  • K. L. Sudha Department of Electronics and Communication Engineering, Dayananda Sagar College of Engineering, India

Abstract

Digital image inpainting is a technique of restoring large removed /damaged regions of an image with the data from the surrounding pixels of the removed region. The issue of image restoration with inpainting techniques occurs commonly in computer vision/image processing when unwanted objects have to be removed from images, for filling cracks in photographs, etc. Digital image inpainting approach is an active field of research in two significant applications of wireless communication: image compression and image recovery from a damaged image due to errors in a wireless channel. This work presents a brief survey of different image inpainting techniques and their contributions to different wireless communication applications.

Keywords:

inpainting, image compression, multipath fading, median filter, RS code

Downloads

Download data is not yet available.

References

S. Masnou, J. M. Morel, “Level lines based disocclusion”, International Conference on Image Processing, Chicago, USA, October 7-7, 1998

M. Bertalmio, G. Sapiro, V. Caselles, C. Ballester, “Image inpainting”, 27th Annual Conference on Computer Graphics and Interactive Techniques, New York, USA, July 23-28, 2000 DOI: https://doi.org/10.1145/344779.344972

C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, J. Verdera, “Filling-in by joint interpolation of vector fields and gray levels”, IEEE Transactions on Image Processing, Vol. 10, No. 8, pp. 1200–1211, 2001 DOI: https://doi.org/10.1109/83.935036

M. Bertalmio, A. L. Bertozzi, G. Sapiro, “Navier-stokes, fluid dynamics, and image and video inpainting”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, USA, December 8-14, 2001

T. F. Chan, J. Shen, “Nontexture inpainting by curvature-driven diffusions”, Vol. 12, No. 4, pp. 436-449, 2001 DOI: https://doi.org/10.1006/jvci.2001.0487

P. Perona, J. Malik, “Scale-space and edge detection using anisotropic diffusion”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 12, No. 7, pp. 629–639, 1990 DOI: https://doi.org/10.1109/34.56205

M. M. Oliveira, B. Bowen, R. McKenna, Y. S. Chang, “Fast digital image inpainting”, International Conference on Visualization, Imaging and Image Processing, Marbella, Spain, September 3-5, 2001

Y. Umeda, K. Arakawa, “Removal of film scratches using exemplar-based inpainting with directional median filter”, International Symposium on Communications and Information Technologies, Gold Coast, Australia, October 2-5, 2012 DOI: https://doi.org/10.1109/ISCIT.2012.6380991

A. A. Efros, T. K. Leung, “Texture synthesis by non-parametric sampling”, Seventh IEEE International Conference on Computer Vision, Corfu, Greece, September 20-27, 1999 DOI: https://doi.org/10.1109/ICCV.1999.790383

M. Ashikhmin, “Synthesizing natural textures”, Proceedings of the Symposium on Interactive 3D Graphics, Chapel Hill, USA, March 26-29, 2001 DOI: https://doi.org/10.1145/364338.364405

A. A. Efros, W. T. Freeman, “Image quilting for texture synthesis and transfer”, 28th Annual Conference on Computer Graphics and Interactive Techniques, New York, USA, August 12-17, 2001 DOI: https://doi.org/10.1145/383259.383296

V. Kwatra, A. Schodl, I. Essa, G. Turk, A. Bobick, “Graphcut textures: Image and video synthesis using graph cuts”, ACM Transactions on Graphics, Vol. 22, No. 3, pp. 277–286, 2003 DOI: https://doi.org/10.1145/882262.882264

M. Bertalmio, L. Vese, G. Sapiro, S. Osher, “Simultaneous structure and texture image inpainting”, IEEE Transactions on Image Processing, Vol. 12, No. 8, pp. 882–889, 2003 DOI: https://doi.org/10.1109/TIP.2003.815261

J. Jia, C. K. Tang, “Image repairing: Robust image synthesis by adaptive ND tensor voting”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Madison, USA, June 18-20, 2003

A. Criminisi, P. Perez, K. Toyama, “Region filling and object removal by exemplar-based image inpainting”, IEEE Transactions on Image Processing, Vol. 13, No. 9, pp. 1200–1212, 2004 DOI: https://doi.org/10.1109/TIP.2004.833105

N. Komodakis, G. Tziritas, “Image completion using efficient belief propagation via priority scheduling and dynamic pruning”, IEEE Transactions on Image Processing, Vol. 16, No. 11, pp. 2649–2661, 2007 DOI: https://doi.org/10.1109/TIP.2007.906269

T. Ruzic, A. Pizurica, “Context-aware patch-based image inpainting using markov random field modeling”, IEEE Transactions on Image Processing, Vol. 24, No. 1, pp. 444–456, 2015 DOI: https://doi.org/10.1109/TIP.2014.2372479

N. Alotaibi, F. Labrosse, “Image completion by structure reconstruction and texture synthesis”, Pattern Analysis and Applications, Vol. 18, No. 2, pp. 333–350, 2015 DOI: https://doi.org/10.1007/s10044-013-0348-4

S. Ge, K. Xie, R. Yang, Z. Shi, “Image completion using global patch matching and optimal seam synthesis”, 22nd International Conference on Pattern Recognition, Stockholm, Sweden, August 24-28, 2014 DOI: https://doi.org/10.1109/ICPR.2014.160

H. Zhao, H. Guo, X. Jin, J. Shen, X. Mao, J. Liu, “Parallel and efficient approximate nearest patch matching for image editing applications”, Neurocomputing, Vol. 305, pp. 39-50, 2018 DOI: https://doi.org/10.1016/j.neucom.2018.03.064

J. B. Huang, S. B. Kang, N. Ahuja, J. Kopf, “Image completion using planar structure guidance”, ACM Transactions on Graphics, Vol. 33, No. 4, Article ID 129, 2014 DOI: https://doi.org/10.1145/2601097.2601205

Z. Hui, J. Li, X. Wang, X. Gao, “Image fine-grained inpainting”, available at: https://arxiv.org/pdf/2002.02609.pdf, 2020

V. Yatnalli, K. L. Sudha, “Patch based image completion for compression application”, Fifth International Conference on Signal and Image Processing, Bangalore, India, January 8-10, 2014 DOI: https://doi.org/10.1109/ICSIP.2014.20

R. Distasi, M. Nappi, S. Vitulano, “Image compression by B-tree triangular coding”, IEEE Transactions on Communications, Vol. 45, No. 9, pp. 1095–1100, 1997 DOI: https://doi.org/10.1109/26.623074

I. Galic, J. Weickert, M. Welk, A. Bruhn, A. Belyaev, H. P. Seidel, “Towards PDE-based image compression”, in: Variational, Geometric, and Level Set Methods in Computer Vision, Vol. 3752, Springer, 2005 DOI: https://doi.org/10.1007/11567646_4

L. Ghouti, A. Bouridane, M. K. Ibrahim, “Image compression using texture modeling”, IEEE International Symposium on Circuits and Systems, Kobe, Japan, May 23-26, 2005

V. Bastani, M. S. Helfroush, K. Kasiri, “Image compression based on spatial redundancy removal and image inpainting”, Journal of Zhejiang University Science C, Vol. 11, No. 2, pp. 92–100, 2010 DOI: https://doi.org/10.1631/jzus.C0910182

D. Liu, X. Sun, F. Wu, “Inpainting with image patches for compression”, Journal of Visual Communication and Image Representation, Vol. 23, No. 1, pp. 100–113, 2012 DOI: https://doi.org/10.1016/j.jvcir.2011.09.001

W. B. Pennebaker, J. L. Mitchell, JPEG: Still image data compression standard, Springer, 1993

D. Taubman, M. Marcellin, JPEG2000 image compression fundamentals: Standards and practice, Springer, 2002 DOI: https://doi.org/10.1007/978-1-4615-0799-4

S. D. Rane, G. Sapiro, M. Bertalmio, “Structure and texture filling-in of missing image blocks in wireless transmission and compression applications”, IEEE Transactions on Image Processing, Vol. 12, No. 3, pp. 296–303, 2003 DOI: https://doi.org/10.1109/TIP.2002.804264

D. Liu, X. Sun, F. Wu, S. Li, Y. Q. Zhang, “Image compression with edge-based inpainting”, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 17, No. 10, pp. 1273–1287, 2007 DOI: https://doi.org/10.1109/TCSVT.2007.903663

C. Wang, X. Sun, F. Wu, H. Xiong, “Image compression with structure-aware inpainting”, International Symposium on Circuits and Systems, Kos, Greece, May 21-24, 2006

Y. Liu, J. Wang, H. Zhang, “Image block error recovery using adaptive patch_based inpainting”, in: Computer Vision, Imaging and Computer Graphics. Theory and Applications, Vol. 229, Springer, 2010 DOI: https://doi.org/10.1007/978-3-642-25382-9_8

Z. Xiong, X. Sun, F. Wu, “Block-based image compression with parameter-assistant inpainting”, IEEE Transactions on Image Processing, Vol. 19, No. 6, pp. 1651–1657, 2010 DOI: https://doi.org/10.1109/TIP.2010.2044960

V. Yatnalli, K. L. Sudha, “Reduced bit rate using image inpainting”, in: Emerging Research in Electronics, Computer Science and Technology, Vol. 248, Springer, 2013 DOI: https://doi.org/10.1007/978-81-322-1157-0_54

V. Yatnalli, K. L. Sudha, “Image compression with inpainting”, IEEE International Symposium on Signal Processing and Information Technology, Ho Chi Minh City, Vietnam, December 12-15, 2012 DOI: https://doi.org/10.1109/ISSPIT.2012.6621279

L. Hoeltgen, M. Mainberger, S. Hoffmann, J. Weickert, C. H. Tang, S. Setzer, D. Johannsen, F. Neumann, B. Doerr, “Optimising spatial and tonal data for PDE-based inpainting”, in: Variational Methods: In Imaging and Geometric Control, Walter de Gruyter GmbH, 2017

M. H. Baig, V. Koltun, L. Torresani, “Learning to inpaint for image compression”, 31st Conference on Neural Information Processing Systems, Long Beach, USA, December 4-9, 2017

L. Yin, R. Yang, M. Gabbouj, Y. Neuvo, “Weighted median filters: A tutorial”, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, Vol. 43, No. 3, pp. 157–192, 1996 DOI: https://doi.org/10.1109/82.486465

E. Abreu, M. Lightstone, S. K. Mitra, K. Arakawa, “A new efficient approach for the removal of impulse noise from highly corrupted images”, IEEE Transactions on Image Processing, Vol. 5, No. 6, pp. 1012–1025, 1996 DOI: https://doi.org/10.1109/83.503916

T. Chen, H. R. Wu, “Adaptive impulse detection using center-weighted median filters”, IEEE Signal Processing Letters, Vol. 8, No. 1, pp. 1–3, 2001 DOI: https://doi.org/10.1109/97.889633

Y. Dong, S. Xu, “A new directional weighted median filter for removal of random-valued impulse noise”, IEEE Signal Processing Letters, Vol. 14, No. 3, pp. 193–196, 2007 DOI: https://doi.org/10.1109/LSP.2006.884014

Z. Chen, L. Zhang, “Multi-stage directional median filter”, International Journal of Information and Communication Engineering, Vol. 5, No. 4, pp. 249–252, 2009

R. H. Chan, C. W. Ho, M. Nikolova, “Salt-and pepper noise removal by median-type noise detectors and detail preserving regularization”, IEEE Transactions on Image Processing, Vol. 14, No. 10, pp. 1479–1485, 2005 DOI: https://doi.org/10.1109/TIP.2005.852196

H. Noori, S. Saryazdi, “Image inpainting using directional median filters”, International Conference on Computational Intelligence and Communication Networks, Bhopal, India, November 26-28, 2010 DOI: https://doi.org/10.1109/CICN.2010.20

R. L. Biradar, V. V. Kohir, “A novel image inpainting technique based on median diffusion”, Sadhana, Vol. 38, No. 4, pp. 621–644, 2013 DOI: https://doi.org/10.1007/s12046-013-0152-2

M. V. Sarode, P. R. Deshmukh, “Image sequence denoising with motion estimation in color image sequences”, Engineering, Technology & Applied Science Research, Vol. 1, No. 6, pp. 139-143, 2011 DOI: https://doi.org/10.48084/etasr.54

V. Yatnalli, K. L. Sudha, “Image transmission over multipath fading channel and image denoising using directional weighted median filter”, International Journal of Computer Applications, Vol. 109, No. 10, pp. 18-23, 2015 DOI: https://doi.org/10.5120/19225-0912

S. Banerjee, A. Bandyopadhyay, A. Mukherjee, A. Das, R. Bag, “Random valued impulse noise removal using region based detection approach”, Engineering, Technology & Applied Science Research, Vol. 7, No. 6, pp. 2288-2292, 2017 DOI: https://doi.org/10.48084/etasr.1609

J. Modestino, D. Daut, “Combined source-channel coding of images”, IEEE Transactions on Communications, Vol. 27, No. 11, pp. 1644–1659, 1979 DOI: https://doi.org/10.1109/TCOM.1979.1094335

M. J. Ruf, J. W. Modestino, “Operational rate-distortion performance for joint source and channel coding of images”, IEEE Transactions on Image Processing, Vol. 8, No. 3, pp. 305–320, 1999 DOI: https://doi.org/10.1109/83.748887

A. Nosratinia, J. Lu, B. Aazhang, “Source-channel rate allocation for progressive transmission of images”, IEEE Transactions on Communications, Vol. 51, No. 2, pp. 186–196, 2003 DOI: https://doi.org/10.1109/TCOMM.2003.809256

H. Boeglen, C. Chatellier, “On the robustness of a joint source-channel coding scheme for image transmission over non frequency selective Rayleigh fading channels”, 2nd International Conference on Information & Communication Technologies, Damascus, Syria, April 24-28, 2006

H. Boeglen, C. Chatellier, O. Haeberle, P. Bourdon, C. Olivier, “WTSOM: A robust still-image transmission scheme suitable for fading channels”, in: Advanced Intelligent Computing Theories and Applications with aspects of Artificial Intelligence, Lecture Notes in Computer Science, Vol. 6216, pp. 334-341, 2010

P. Stavrou, G. Nikolakopoulos, N. Fanakis, A. Tzes, T. Theoharis, “An application of the inpainting algorithm for recovering packet losses from transmitting sequential quad tree compressed images over wireless sensor networks”, IFAC Proceedings Volumes, Vol. 42, No. 19, pp. 514-519, 2009 DOI: https://doi.org/10.3182/20090921-3-TR-3005.00089

T. D. H. Du, “Using structure and texture filling-in of missing H.264 image blocks in fading channel transmission”, 2006 International Conference on Image Processing, Computer Vision, & Pattern Recognition, Las Vegas, Nevada, USA, June 26-29, 2006

S. Lee, S. W. Oh, D. Y. Won, S. J. Kim, “Copy-and-paste networks for deep video inpainting”, IEEE International Conference on Computer Vision, Seoul, South Korea, October 27-November 3, 2019 DOI: https://doi.org/10.1109/ICCV.2019.00451

Mathworks, Communications toolbox, available at: https://www.mathworks.com/products/communications.html

B. Sklar, Digital communications, 2nd Edition, Prentice Hall, 2001

V. Yatnalli, K. L. Sudha, “Joint source-channel coding by inpainting and RS code”, Journal of Advanced Research in Dynamical and Control Systems, Vol. 10, No. 13, pp. 1663-1678, 2018

J. G. Proakis, Digital communications, McGraw-Hill, 1995

M. Patzold, Mobile fading channels, John Wiley & Sons, 2002 DOI: https://doi.org/10.1002/0470847808

W. C. Jakes, Microwave mobile communications, John Wiley & Sons, 1974

R. H. Clarke, “A statistical theory of mobile-radio reception”, Bell System Technical Journal, Vol. 47, No. 6, pp. 957–1000, 1968 DOI: https://doi.org/10.1002/j.1538-7305.1968.tb00069.x

C. D. Iskander, “A MATLAB-based object-oriented approach to multipath fading channel simulation”, available at: https://www.mathworks.com/matlabcentral/fileexchange/18869-a-matlab-based-object-oriented-approach-to-multipath-fading-channel-simulation

Downloads

How to Cite

[1]
V. Yatnalli, B. G. Shivaleelavathi, and K. L. Sudha, “Review of Inpainting Algorithms for Wireless Communication Application”, Eng. Technol. Appl. Sci. Res., vol. 10, no. 3, pp. 5790–5795, Jun. 2020.

Metrics

Abstract Views: 412
PDF Downloads: 228

Metrics Information
Bookmark and Share