Openings Effect on the Performance of Reinforced Concrete Beams Loaded in Bending and Shear
Abstract
Transverse openings are often provided to reinforced concrete beams to accommodate utility ducts and pipes. This technique is usually adopted to avoid the creation of dead space in structures caused by extended dropped ceilings and leads to significant cost saving. On the other hand, the provision of openings through a beam creates a reduction in its strength and affects serviceability. In this study, ten reinforced concrete beams were cast using C30 concrete. Material characterization and engineering properties tests were carried out to ensure compliance with the requirements provided by the codes of practice. The effect of vertical positioning and size of openings was investigated through subjecting the beams to a four-point bending test after 28 days of curing. Maximum load capacity, first cracking load, and deflections at mid-span were recorded and crack pattern and failure mode were evaluated. Test data showed that openings of depth greater than 0.4d significantly affect the beams’ strength and lead to earlier cracking, while the failure mode remains essentially the same, a diagonal tension crack through the opening except for opening of 0.5d size where the failure occurred by a sudden formation of two independent shear cracks above and below the opening. When holes were located above the centroid of the section, the beams exhibited a lesser deflection characterized by the absence of plastic deformation. Furthermore, a significant reduction in strength was recorded compared to cases where the positioning of openings was in tension chords. This was validated using equations from the ACI code of reinforced concrete design.
Keywords:
circular openings, RC beams, opening size, vertical location, four-point bending test, strength, serviceabilityDownloads
References
M. A. Mansur, “Design of reinforced concrete beams with web openings”, Asia-Pacific Structural Engineering and Construction Conference, Kuala Lumpur, Malaysia, September 5-6, 2006
S. Amiri, R. Masoudnia, “Investigation of the oppening effects on the behavior of concrete beams without additional reinforcement in opening region using FEM method”, Australian Journal of Basic and Applied Sciences, Vol. 5, No. 5, pp. 617–627, 2011
M. A. Mansur, “Effect of openings on the behaviour and strength of R/C beams in shear”, Cement and Concrete Composites, Vol. 20, No. 6, pp. 477–486, 1998 DOI: https://doi.org/10.1016/S0958-9465(98)00030-4
S. A. A. Sheikh, “Flexural behaviour of RC beams with opening”, Concrete Research Letters, Vol. 5, No. 2, pp. 812–824, 2014
S. M. Allam, “Strengthening of RC beams with large openings in the shear zone”, Alexandria Engineering Journal, Vol. 44, No. 1, pp. 59–78, 2005
S. Amiri, R. Masoudnia, A. A. Pabarja, “The study of the effects of web openings on the concrete beams”, Australian Journal of Basic and Applied Sciences, Vol. 5, No. 7, pp. 547–556, 2011
J. V. Amiri, M. H. Alibygie, “Effect of small circular opening on the shear and flextural behavior and ultimate strength of reinforced concrete beams using normal and high strength concrete”, 13th World Conference on Earthquake Engineering, Vancouver, Canada, August 1-6, 2004
W. B. Siao, S. F. Yap, “Ultimate behavior of unstrengthen large openings made in existing concrete beams”, Journal of the Institution of Engineers, Vol. 30, No. 3, pp. 51–57, 1990
British Standards, BS 882 (1992): Specification for aggregates from natural sources for concrete, British Standards, 1992
European Standard, EN 197-1 (2000): Cement-part 1: Composition, specifications and conformity criteria for common cements, European Standard, 2000
ASTM A1096/A1096M-15 (2015): Standard test method for evaluating bond of individual steel wire, indented or plain, for concrete reinforcement, ASTM A1096/A1096M-15, 2015
D. C. Teychenne, R. E. Franklin H. C. Erntroy, Design of normal concrete mixes, Bre Press, 1997
K. Hover, “Testing hardened concrete”, Publication #C930727, The Aberdeen Group, 1993
R. S. Narayanan, K. R. Wilson, R. J. W. Milne, Manual for the design of reinforced concrete building structures to EC2, The Institution of Structural Engineers, 2000
G. N. J. Kani, “The riddle of shear failure and its solution”, ACI Journal Proceedings, Vol. 61, No. 4, pp. 441-468, 1964 DOI: https://doi.org/10.14359/7791
Association Francaise de Normalisation, Structure-repair and strengthening of concrete engineering structures-treatment of cracks and protection of concrete-specifications for the technique and materials used, Association Francaise de Normalisation, 2014
R. C. Murthy, G. S. Palani, N. R. Iyer, “Residual strength evaluation of unstiffened and stiffened panels under fatigue loading”, Structural Durability & Health Monitoring, Vol. 5, No. 3, pp. 201-226, 2009
H. A. Abdalla, A. M. Torkey, H. A. Haggag, A. F. A. Amira, “Design against cracking at openings in reinforced concrete beams strengthened with composite sheets”, Composite Structures, Vol. 60, No. 2, pp. 197-204, 2003 DOI: https://doi.org/10.1016/S0263-8223(02)00305-7
T. Ozbakkaloglu, M. Saatcioglu, “Rectangular stress block for high-strength concrete”, Aci Structural Journal, Vol. 101, No. 4, pp. 475-483, 2004 DOI: https://doi.org/10.14359/13333
American Concrete Institute, ACI 318-95 (1995): Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, 1995
Downloads
How to Cite
License
Authors who publish with this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after its publication in ETASR with an acknowledgement of its initial publication in this journal.