CMOS Compatible Plasmonic Refractive Index Sensor based on Heavily Doped Silicon Waveguide

M. O. Faruque, R. Al Mahmud, R. H. Sagor


In this study, a plasmonic refractive index (RI) sensor using heavily n-doped silicon waveguide is designed and numerically simulated using finite element method (FEM). The reported sensor is based on gratings inside a heavily doped silicon waveguide structure instead of a conventional metal-insulator-metal structure. This feature enables the device to overcome the limitations of conventional plasmonic devices like optical losses, polarization management, etc. Besides, it makes the device compatible with Complementary Metal Oxide Semiconductor (CMOS) technology and thus provides an easier way of practical fabrication and incorporation in integrated circuits. The presented sensor has a highest sensitivity of 1208.9nm/RIU and a resolution as small as 0.005 which is comparable with conventional plasmonic sensors reported to date. The main advantage of this plasmonic sensor is that it has a very simple structure and uses silicon instead of metal which provides an easier way of fabrication.


CMOS technology; heavily doped silicon; metal-insulator-metal; RI sensor

Full Text:



W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics”, Nature, Vol. 424, pp. 824-830, 2003

D. K. Gramotnev, S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation”, Nature Photonics, Vol. 8, No. 1, pp. 14-23, 2014

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. Lavrinenko, S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas”, Nano Letters, Vol. 15, No. 12, pp. 8148-8154, 2015

Z. Han, L. Liu, E. Forsberg, “Ultra-compact directional couplers and Mach–Zehnder interferometers employing surface plasmon polaritons”, Optics Communications, Vol. 259, No. 2, pp. 690-695, 2006

Z. Kang, G. P. Wang, “Coupled metal gap waveguides as plasmonic wavelength sorters”, Optics Express, Vol. 16, No. 11, pp. 7680-7685, 2008

M. A. Butt, S. N. Khonina, N. L. Kazanskiy, “Silicon on silicon dioxide slot waveguide evanescent field gas absorption sensor”, Journal of Modern Optics, Vol. 65, No. 2, pp. 174-178, 2018

M. A. Butt, S. A. Degtyarev, S. N. Khonina, N. L. Kazanskiy, “An evanescent field absorption gas sensor at mid-IR 3.39 μm wavelength”, Journal of Modern Optics, Vol. 64, No. 18, pp. 1892-1897, 2017

Z. Zhou, H. Wu, J. Feng, J. Hou, H. Yi, X. Wang, “Silicon nanophotonic devices based on resonance enhancement”, Journal of Nanophotonics, Vol. 4, Article ID 041001, 2010

S. Akhtar, Z. Farid, H. Ahmed, S. A. Khan, Z. N. Khan, “Low-cost synthesis and characterization of silver nanoparticles for diverse sensing application”, Engineering, Technology & Applied Science Research, Vol. 9, No. 2, pp. 3915-3917, 2019

D. Liu, J. Wang, F. Zhang, Y. Pan, J. Lu, X. Ni, “Tunable plasmonic band-pass filter with dual side-coupled circular ring resonators”, Sensors, Vol. 17, No. 3, pp. 585, 2017

H. Wang, J. Yang, J. Zhang, J. Huang, W. Wu, D. Chen, G. Xiao, “Tunable band-stop plasmonic waveguide filter with symmetrical multiple-teeth-shaped structure”, Optics Letters, Vol. 41, No. 6, pp. 1233-1236, 2016

M. Farhat, J. Munisami, M. A. Niby, M. Nahas, “A compact quint-band bandpass filter based on stub-loaded resonators”, Engineering, Technology & Applied Science Research, Vol. 7, No. 3, pp. 1694-1698, 2017

J. Chee, S. Zhu, G. Q. Lo, “CMOS compatible polarization splitter using hybrid plasmonic waveguide”, Optics Express, Vol. 20, No. 23, pp. 25345-25355, 2012

K. W. Chang, C. C. Huang, “Ultrashort broadband polarization beam splitter based on a combined hybrid plasmonic waveguide”, Scientific Reports, Vol. 6, Article ID 19609, 2016

F. Lou, D. Dai, L. Wosinski, “Ultracompact polarization beam splitter based on a dielectric–hybrid plasmonic–dielectric coupler”, Optics Letters, Vol. 37, No. 16, pp. 3372-3374, 2012

Y. Gao, Q. Gan, Z. Xin, X. Cheng, F. J. Bartoli, “Plasmonic Mach–Zehnder interferometer for ultrasensitive on-chip biosensing”, ACS Nano, Vol. 5, No. 12, pp. 9836-9844, 2011

Q. Gan, Y. Gao, F. J. Bartoli, “Vertical plasmonic Mach-Zehnder interferometer for sensitive optical sensing”, Optics Express, Vol. 17, No. 23, pp. 20747-20755, 2009

O. Daneshmandi, A. Alighanbari, A. Gharavi, “Characteristics of new hybrid plasmonic Bragg reflectors based on sinusoidal and triangular gratings”, Plasmonics, Vol. 10, pp. 233-239, 2015

A. Hosseini, Y. Massoud, “A low-loss metal-insulator-metal plasmonic bragg reflector”, Optics Express, Vol. 14, No. 23, pp. 11318-11323, 2006

J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Wang, B. Zou, S. Wen, “A wide bandgap plasmonic Bragg reflector”, Optics Express, Vol. 16, No. 7, pp. 4888-4894, 2008

Z. Zhang, J. Yang, X. He, J. Zhang, J. Huang, D. Chen, Y. Han, “Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator”, Sensors, Vol. 18, Article ID 116, 2018

A. G. Brolo, “Plasmonics for future biosensors”, Nature Photonics, Vol. 6, pp. 709-713, 2012

W. C. Law, K. T. Yong, A. Baev, P. N. Prasad, “Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement”, ACS Nano, Vol. 5, No. 6, pp. 4858-4864, 2011

T. Wu, Y. Liu, Z. Yu, Y. Peng, C. Shu, H. Ye, “The sensing characteristics of plasmonic waveguide with a ring resonator”, Optics Express, Vol. 22, No. 7, pp. 7669-7677, 2014

T. Srivastava, R. Das, R. Jha, “Highly sensitive plasmonic temperature sensor based on photonic crystal surface plasmon waveguide”, Plasmonics, Vol. 8, No. 2, pp. 515-521, 2013

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit”, Nature Communications, Vol. 4, pp. 2381, 2013

H. Wang, “Plasmonic refractive index sensing using strongly coupled metal nanoantennas: Nonlocal limitations”, Scientific Reports, Vol. 8, Article ID 9589, 2018

L. D. Landau, J. S. Bell, M. J. Kearsley, L. P. Pitaevskii, E. M. Lifshitz, J. B. Sykes, Electrodynamics of continuous media, Elsevier, 2013

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals”, Physical Review B, Vol. 6, pp. 4370, 1972

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials”, Nature Nanotechnology, Vol. 10, No. 1, pp. 2-6, 2015

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, “Optical cloaking with metamaterials”, Nature Photonics, Vol. 1, pp. 224-227, 2007

Y. Yagil, G. Deutscher, “Transmittance of thin metal films near the percolation threshold”, Thin Solid Films, Vol. 152, No. 3, pp. 465-471, 1987

F. Abeles, Y. Borensztein, T. L. Rios, “Optical properties of discontinuous thin films and rough surfaces of silver”, Advances in Solid State Physics, pp. 93-117, 1984

S. A. Maier, Plasmonics: Fundamentals and applications, Springer, 2007

M. G. Saber, N. Abadia, D. V. Plant, “CMOS compatible all-silicon TM pass polarizer based on highly doped silicon waveguide”, Optics Express, Vol. 26, No. 16, pp. 20878-20887, 2018

Z. Qi, G. Hu, L. Li, B. Yun, R. Zhang, Y. Cui, “Design and analysis of a compact soi-based aluminum/highly doped p-type silicon hybrid plasmonic modulator”, IEEE Photonics Journal, Vol. 8, No. 3, pp. 4801711, 2016

G. V. Naik, V. M. Shalaev, A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver”, Advanced Materials, Vol. 25, No. 24, pp. 3264-3294, 2013

Y. B. Chen, Z. M. Zhang, “Heavily doped silicon complex gratings as wavelength-selective absorbing surfaces”, Journal of Physics D: Applied Physics, Vol. 41, No. 9, Article ID 095406, 2008

D. K. Schroder, R. N. Thomas, J. C. Swartz, “Free carrier absorption in silicon”, IEEE Journal of Solid-State Circuits, Vol. 13, No. 1, pp. 180-187, 1978

M. V. Exter, D. Grischkowsky, “Carrier dynamics of electrons and holes in moderately doped silicon”, Physical Review B, Vol. 41, Article ID 12140, 1990

S. Naghizadeh, S. E. Kocabas, “Guidelines for designing 2D and 3D plasmonic stub resonators”, JOSA B, Vol. 34, No. 1, pp. 207-217, 2017

COMSOL multiphysics user’s guide, Version: September 2005, Comsol, 2005

eISSN: 1792-8036     pISSN: 2241-4487