Improved Steel Beam-Column Connections in Industrial Structures

Authors

  • N. W. Bishay-Girges College of Engineering, University of Hail, Saudi Arabia
Volume: 10 | Issue: 1 | Pages: 5126-5131 | February 2020 | https://doi.org/10.48084/etasr.3248

Abstract

Beam-to-column connection is a rigid connection used in steel moment frames which acts as the main resisting system in structural design. Haunches with double beam section height at the eave, ridge and crane bracket are usually used to resist the large bending moment at the critical locations of the steel frames. Damper devices can be used as the main source of producing forces used to reduce the bending moment due to different static and dynamic loads. This study focuses on improving the steel beam-column connection with the proposed control system in the eave connection which can also be used under the bracket which supports crane beam in industrial buildings. The purpose of this study is to describe the development of the beam-column steel connection incorporating dampers installed to beam bottom flange to reduce the effect of applied load on the frame without the need to create haunches to make the connection design more efficient.

Keywords:

steel frame, beam-column connection, haunch, bracket, damper, crane

Downloads

Download data is not yet available.

References

New Zealand Standard, AS/NZS 1170.2 (2002): Structural design actions, part 2: Wind actions, New Zealand Standard, 2002

K. Bayat, B. Shekatehband, “Seismic performance of beam to column connections with T-shaped slit damper”, Thin-Walled Structures, Vol. 141, pp. 28-46, 2019 DOI: https://doi.org/10.1016/j.tws.2019.04.010

P. P. Cordova, R. O. Hamburger, “Steel connections: Proprietary or public domain?”, Modern Steel Construction, Vol. 10, pp. 24-31, 2011

M. A. Farmani, M. Ghassemieh, “Steel beam-to-column connections equipped with SMA tendons and energy dissipating devices including shear tabs or web hourglass pins”, Journal of Constructional Steel Research, Vol. 135, pp. 30-48, 2017 DOI: https://doi.org/10.1016/j.jcsr.2017.04.003

S. Rambormozian, G. C. Clifton, G. A. MacRae, H. H. Khoo, “The sliding hinge joint: Final steps towards on optimum low damage seismic-resistant steel system”, Key Engineering Materials, Vol. 763, pp.751-760, 2018 DOI: https://doi.org/10.4028/www.scientific.net/KEM.763.751

T. J. Mander, G. W. Rodgers, J. G. Chase, J. B. Mander, G. A. MacRae, R. P. Dhakal, “Damage avoidance design steel beam-column moment connection using high-force-to-volume dissipators”, Journal of Structural Engineering, Vol. 135, No. 11, pp. 1390-1396, 2009 DOI: https://doi.org/10.1061/(ASCE)ST.1943-541X.0000065

G. Machae, C. Clifton, “Low damage design of steel structures”, Steel Innovations 2013 Workshop, Christchurch, New Zealand, February 21-22, 2013

J. M. Fisher, Design guide 7 industrial buildings: roofs to anchor rods, American Institute of Steel Construction, 2005

C. Christopoulos, A. Filiatrault, C. M. Uang, B. Folz, “Posttensioned energy dissipating connections for moment-resisting steel frames”, Journal of Structural Engineering, Vol. 128, No. 9, pp. 1111-1120, 2002 DOI: https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1111)

S. R. Mirghaderi, M. D. Renani, “The rigid seismic connection of continuous beams to column”, Journal of Constructional Steel Research, Vol. 64, No. 12, pp. 1516-1529, 2008 DOI: https://doi.org/10.1016/j.jcsr.2008.01.015

J. M. Ricles, R. Sauce, M. M. Garlock, C. Zheo, “Posttensioned seismic-resistant connections for steel frames”, Journal of Structural Engineering, Vol. 127, No. 2, pp. 113-121, 2001 DOI: https://doi.org/10.1061/(ASCE)0733-9445(2001)127:2(113)

C. C. Chou, Y. C. Wang, J. H. Chen “Seismic design and behavior of post-tensioned steel connections including effects of a composite slab”, Engineering Structures, Vol. 30, No. 11, pp. 3014-3023, 2008 DOI: https://doi.org/10.1016/j.engstruct.2008.04.013

J. N. Arlekar, C. V. R. Murty, “Improved truss model for design of welded steel moment-resisting frame connections”, Journal of Structural Engineering, Vol. 130, No. 3, pp. 498-510, 2004 DOI: https://doi.org/10.1061/(ASCE)0733-9445(2004)130:3(498)

M. Wolski, J. M. Ricles, R. Sause, “Experimental study of a self-centering beam-column connection with bottom flange friction device”, Journal of Structural Engineering, Vol. 135, No. 5, pp. 479-488, 2009 DOI: https://doi.org/10.1061/(ASCE)ST.1943-541X.0000006

Microstran Leading-edge Software for Structural Engineers, Product data sheet, Bentley

P. H. Sarjou, N. Shabakhty, “Effect of the improved pall friction damper on the seismic response of steel frames”, Engineering, Technology & Applied Science Research, Vol. 7, No. 4, pp. 1833-1837, 2017 DOI: https://doi.org/10.48084/etasr.1176

G. Xu, M. Yamanari, “Performance of steel frame with linkage system under earthquake excitation”, Engineering, Technology & Applied Science Research, Vol. 9, No. 1, pp. 3795-3801, 2019 DOI: https://doi.org/10.48084/etasr.2519

N. W. B. Girges, “An alternative system for eccentrically braced frames resisting lateral loads”, Engineering, Technology & Applied Science Research, Vol. 9, No. 3, pp. 4281-4286, 2019 DOI: https://doi.org/10.48084/etasr.2778

A. Williams, Steel structural design for lateral and vertical forces, Mc Graw Hill, Second edition, 2016

S. T. Woolcook, S. Kitipornchai, M. A.Bradford, Design of portal frame building, Australian Institute of Steel Construction, Third edition, 1999

B. E. Gorenc, R. Tinyou, A. A. Syam, Steel designers’ handbook, UNSW Press, Eighth edition, 2012

Downloads

How to Cite

[1]
Bishay-Girges, N.W. 2020. Improved Steel Beam-Column Connections in Industrial Structures. Engineering, Technology & Applied Science Research. 10, 1 (Feb. 2020), 5126–5131. DOI:https://doi.org/10.48084/etasr.3248.

Metrics

Abstract Views: 1848
PDF Downloads: 856

Metrics Information

Most read articles by the same author(s)