A Two Element Plasma Antenna Array

F. Sadeghikia, F. Hodjat-Kashani

Abstract


This theoretical study presents the characteristics of plasma monopole antennas in the VHF/UHF range using finite difference time domain (FDTD) simulation. Results show that more broadband characteristics can be obtained by increasing the diameter of the plasma tube and that the minor lobes diminish in intensity as diameter increases. Furthermore, the nulls are replaced by low level radiation. Since the collision frequency, which is a function of gas pressure, represents the loss mechanism of plasma, decreasing its value increases the gain and radar cross section (RCS) of the antenna. Theoretical modeling shows that at higher plasma frequencies with respect to the signal frequency, the gain and radar cross section of the plasma antenna are high enough and that the impedance curves are altered as the plasma frequency varies. Using these preliminary studies, mutual impedance and gain of a broadside array of two parallel side-by-side plasma elements is presented.


Keywords


plasma antenna; radiation pattern; gain; input impedance; surface wave

Full Text:

PDF

References


J. P. Rayner, A. P. Wichello, A. D. Cheetham, “Physical characteristics of plasma antennas”, IEEE Transactions on Plasma Science, Vol. 32, No. 1, pp. 269-281, 2004

G. Cerri, R. De Leo, V. M. Primiani, P. Russo, “Measurement of the properties of a plasma column used as a radiating element”, IEEE Transactions on Instrumentation and Measurement, Vol. 57, No. 2, pp. 242-247, 2008

T. Anderson, I. Alexeff, E. Farshi, N. Karnam, E. P. Pradeep, N. R. Pulasani, J. Peck, “An operating intelligent plasma antenna”, 16th IEEE International Pulsed Power Conference, Albuquerque, New Mexico USA, pp. 353-356, 2007

Y. Lee, S. Ganguly, “Analysis of a plasma-column antenna using FDTD method”, Microwave and Optical Technology Letters, Vol. 46, No. 3, pp. 252-259, 2005

Z. H. Qian, R. S. Chen, K. W. Leung, H. W. Yang, "FDTD analysis of microstrip patch antenna covered by plasma sheath”, Progress in Electromagnetics Research, Vol. 52, pp. 173-183, 2005

P. Russo, G. Cerri, E. Vecchioni, “Self consistent analysis of cylindrical plasma antennas”, IEEE Transactions on Antenna and Propagation, Vol. 59, No. 5, pp. 1503-1511, 2011

Z. H. Qian, R. S. Chen, Z. H. Fan, P. L. Rui, “Analysis of electromagnetic scattering from plasma antenna using CG-FFT method”, International Journal of Infrared and Millimeter Waves, Vol. 29, No. 5, pp. 486-492, 2008

F. Sadeghikia, F. Hodjat-Kashani, J. Rashed-Mohassel, J. Ghayoomeh-Bozorgi, “Characterization of a surface wave driven plasma monopole antenna”, Journal of Electromagnetic Waves and Applications, Vol. 26, No. 2-3, pp. 239–250, 2012

Oleg A. Popov, High density plasma sources: design, physics and performance, Noyes publication, Park Ridge, New Jersey, 1995

R. Kumar, D. Bora, “Experimental study of parameters of a plasma antenna”, Plasma Science and Technology, Vol. 12, No. 5, pp. 592-600, 2010

Z. Rakem, P. Leprince, J. Marec, “Characteristics of a surface wave produced discharge operating under standing wave conditions”, Revue Physique Appliquee, Vol. 25, No. 1, pp. 125-130, 1990

L. J. Nickisch, P. M. Franke, “Finite-difference time-domain solution of Maxwell's equations for the dispersive ionosphere”, IEEE Antennas and Propagation Magazine, Vol. 34, No. 5, pp. 33-39, 1992

K. S. Kunz, R. J. Rubbers, The finite difference time domain method for electromagnetics, CRC press, Boca Raton, FL, 1993

A. Taflove, Computational electromagnetics: The finite difference time domain method, Artech House, Boston, FL, 1995

R. J. Luebbers, K. S. Kunz, M. Schneider, F. Hansberger, “A finite-difference time-domain near zone to far zone transformation [electromagnetic scattering]”, IEEE Transactions on Antennas and Propagation, Vol. 39, No. 4, pp. 429-433, 1991

A. Balanis, Antenna theory, analysis and design, John Wiley & Sons Inc., New Jersey, 2005

U. Kortshagen, C. Busch, L. D. Tsendin, “On simplifying approaches to the solution of the Boltzmann equation in spatially inhomogeneous plasmas”, Plasma Sources Science and Technology, Vol. 5, No. 1, pp. 1-17, 1996

M. Y. Naz, A. Ghaffar, N. U. Rehman, S. Naseer, M. Zakaullah, “Double and triple Langmuir probes measurements in inductively coupled nitrogen plasma”, Progress In Electromagnetics Research, Vol. 114, pp. 113-128, 2011

M. Y. Naz, A. Ghaffar, N. U. Rehman, M. Azam, S. Shukrullah, A. Qayyum, M. Zakaullah, “Symmetric and asymmetric double Langmuir probes characterization of radio frequency inductively coupled Nitrogen plasma”, Progress in Electromagnetics Research, Vol. 115, pp. 207-221, 2011

I. L. Morrow, J. R. James, “Fundamental limitation on excitation of a surface wave on a plasma column”, IEEE Antennas and Propagation Society International Symposium, Texas, USA, Vol. 4, pp. 272-275, 2002




eISSN: 1792-8036     pISSN: 2241-4487