An Efficient Depth Estimation Technique Using 3-Trait Luminance Profiling

Authors

  • I. Usman College of Computing and Informatics, Saudi Electronic University, Saudi Arabia
Volume: 9 | Issue: 4 | Pages: 4428-4432 | August 2019 | https://doi.org/10.48084/etasr.2857

Abstract

This paper presents an efficient depth estimation technique for depth image-based rendering process in the 3-D television system. It uses three depth cues, namely linear perspective, motion information, and texture characteristics, to estimate the depth of an image. In addition, suitable weights are assigned to different components of the image based on their relative perspective position of either the foreground or the background in the scene. Experimental results on publicly available datasets validate the usefulness of the proposed technique for efficient estimation of depth maps.

Keywords:

depth estimation, 3D TV, DIBR, depth image, 3-D warping

Downloads

Download data is not yet available.

References

J. Son, B. Javidi, S. Yano, K. Choi, “Recent Developments in 3-D Imaging Technologies”, Journal of Display Technology, Vol. 6, No. 10, pp. 394-403, 2010 DOI: https://doi.org/10.1109/JDT.2010.2045636

L. Zhang, W. J. Tam, “Stereoscopic image generation based on depth images for 3D TV”, IEEE Transactions on Broadcasting, Vol. 51, No. 2, pp. 191-199, 2005 DOI: https://doi.org/10.1109/TBC.2005.846190

A. Almansa, A. Desolneux, S. Vamech, “Vanishing point detection without any a priori information”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 25, No. 4, pp. 502-507, 2003 DOI: https://doi.org/10.1109/TPAMI.2003.1190575

B. Wang, J. Zou, Y. Li, K. Ju, H. Xiong, Y. F. Zheng, “Sparse-to-Dense Depth Estimation in Videos via High-Dimensional Tensor Voting”, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 29, No. 1, pp. 68-79, 2019 DOI: https://doi.org/10.1109/TCSVT.2017.2763602

J. Liu, Y. Wang, Y. Li, J. Fu, J. Li, H. Lu, “Collaborative Deconvolutional Neural Networks for Joint Depth Estimation and Semantic Segmentation”, IEEE Transactions on Neural Networks and Learning Systems, Vol. 29, No. 11, pp. 5655-5666, 2018 DOI: https://doi.org/10.1109/TNNLS.2017.2787781

Z. Hao, Y. Li, S. You, F. Lu, “Detail Preserving Depth Estimation from a Single Image Using Attention Guided Networks”, 2018 International Conference on 3D Vision (3DV), Verona, Italy, September 5-8, 2018 DOI: https://doi.org/10.1109/3DV.2018.00043

X. Jiang, M. L. Pendu, C. Guillemot, “Depth Estimation with Occlusion Handling from a Sparse Set of Light Field Views”, 25th IEEE International Conference on Image Processing, Athens, Greece, October 7-10, 2018 DOI: https://doi.org/10.1109/ICIP.2018.8451466

M. Carvalho, B. Le Saux, P. Trouve-Peloux, A. Almansa, F. Champagnat, “On Regression Losses for Deep Depth Estimation”, 25th IEEE International Conference on Image Processing, Athens, Greece, October 7-10, 2018 DOI: https://doi.org/10.1109/ICIP.2018.8451312

X. Duan, X. Ye, Y. Li, H. Li, “High Quality Depth Estimation from Monocular Images Based on Depth Prediction and Enhancement Sub-Networks”, IEEE International Conference on Multimedia and Expo, San Diego, USA, July 23-27, 2018 DOI: https://doi.org/10.1109/ICME.2018.8486539

K. Ghosh, S. K. Pal, “Some Insights Into Brightness Perception of Images in the Light of a New Computational Model of Figure–Ground Segregation”, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, Vol. 40, No. 4, pp. 758-766, 2010 DOI: https://doi.org/10.1109/TSMCA.2010.2044503

M. Song, D. Tao, C. Chen, X. Li, C. W. Chen, “Color to Gray: Visual Cue Preservation”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 32, No. 9, pp. 1537-1552, 2010 DOI: https://doi.org/10.1109/TPAMI.2009.74

A. V. Le, S. W. Jung, C. S. Won, “Directional Joint Bilateral Filter for Depth Images”, Sensors, Vol. 14, No. 7, pp. 11362-11378, 2014 DOI: https://doi.org/10.3390/s140711362

http://vision.middlebury.edu/stereo/data/scenes2005/[Accessed: 21-Apr-2019]

Downloads

How to Cite

[1]
Usman, I. 2019. An Efficient Depth Estimation Technique Using 3-Trait Luminance Profiling. Engineering, Technology & Applied Science Research. 9, 4 (Aug. 2019), 4428–4432. DOI:https://doi.org/10.48084/etasr.2857.

Metrics

Abstract Views: 473
PDF Downloads: 332

Metrics Information