Mechanical Performance of Honeycomb Sandwich Structures Using Three-Point Bend Test
Abstract
In this study, honeycomb sandwich structures were prepared and tested. Facesheets of sandwich structures were manufactured by carbon fiber epoxy matrix composites while Nomex® honeycomb was used as core material. An epoxy-based adhesive film was used to bond the composite facesheets with honeycomb core. Four different curing temperatures ranging from 100oC to 130oC were applied with curing times of 2h and 3h. Three-point bend test was performed to investigate the mechanical performance of honeycomb sandwich structures and thus optimize the curing parameters. It was revealed that the combination of a temperature of 110oC along with a curing time of 2h offered the optimum mechanical performance together with low damage in honeycomb core and facesheets.
Keywords:
honeycomb sandwich, mechanical, three-point bend test, epoxy, carbon fiberDownloads
References
J. Avery, B. V. Sankar, “Compressive failure of sandwich beams with debonded face-sheets”, Journal of Composite Materials, Vol. 34, No. 14, pp. 1176-1199, 2000 DOI: https://doi.org/10.1177/002199830003401402
W. J. Cantwell, P. Davies, “A test technique for assessing core-skin adhesion in composite sandwich structures”, Journal of Materials Science Letters, Vol. 13, No. 3, pp. 203-205, 1994 DOI: https://doi.org/10.1007/BF00278162
A. Johnson, G. D. Sims, “Mechanical properties and design of sandwich materials”, Composites, Vol. 17, No. 4, pp. 321-328, 1986 DOI: https://doi.org/10.1016/0010-4361(86)90749-4
M. Giglio, A. Gilioli, A. Manes, “Numerical investigation of a three point bending test on sandwich panels with aluminum skins and Nomex ™ honeycomb core”, Computational Materials Science, Vol. 56, pp. 69-78, 2012 DOI: https://doi.org/10.1016/j.commatsci.2012.01.007
Z. Wang, Z. Li, W. Xiong “Numerical study on three-point bending behavior of honeycomb sandwich with ceramic tile”, Composites Part B: Engineering, Vol. 167, pp. 63-70, 2019 DOI: https://doi.org/10.1016/j.compositesb.2018.11.108
Z. Wang, Z. Li, W. Xiong “Experimental investigation on bending behavior of honeycomb sandwich panel with ceramic tile face-sheet”, Composites Part B: Engineering, Vol. 164, pp. 280-286, 2019 DOI: https://doi.org/10.1016/j.compositesb.2018.10.077
G. S. Langdon, C. J. von Klemperer, B. K, Rowland, G. N. Nurick, “The response of sandwich structures with composite face sheets and polymer foam cores to air-blast loading: preliminary experiments”, Engineering Structures, Vol. 36, pp. 104-112, 2012 DOI: https://doi.org/10.1016/j.engstruct.2011.11.023
H. Fan, Q. Zhou, W. Yang, Z. Jingjing, “An experimental study on the failure mechanims of woven textile sandwich panels under quasi-static loading”, Composites Part B: Engineering, Vol. 41, No. 8, pp. 686-692, 2010 DOI: https://doi.org/10.1016/j.compositesb.2010.07.004
O. Velecela, M. S. Found, C. Soutis, “Crushing energy absorption of GFRP sandwich panels and corresponding monolithic laminates”, Composites Part A: Applied Science and Manufcaturing, Vol. 38, No. 4, pp. 1149-1158, 2007 DOI: https://doi.org/10.1016/j.compositesa.2006.06.002
W. J. Cantwell, R. Scudamore, J. Ratcliffe, P. Davies, “Interfacial fracture in sandwich laminates”, Composites Science and Technology, Vol. 59, No.14, pp. 2079-2085, 1999 DOI: https://doi.org/10.1016/S0266-3538(99)00065-2
U. Farooq, M. S. Ahmad, S. A. Rakha, N. Ali, A. A. Khurram, T. Subhani, “Interfacial mechanical performance of composite honeycomb sandwich panels for aerospace applications”, Arabian Journal for Science and Engineering, Vol. 42, No. 5, pp. 1775-1782, 2017 DOI: https://doi.org/10.1007/s13369-016-2307-z
R. Okada, M. T. Kortschot, “The role of the resin fillet in the delimination of honeycomb sandwich structures”, Composites Science and Technology, Vol. 62, No. 14, pp. 1811-1819, 2002 DOI: https://doi.org/10.1016/S0266-3538(02)00099-4
J. Rion, Y. Leterrier, J. A. E. Manson, “Prediction of the adhesive fillet size for skin to honeycomb core bonding in ultra-light sandwich structures”, Composites Part A: Applied Science and Manufacturing, Vol. 39, No. 9, pp. 1547-1555, 2008 DOI: https://doi.org/10.1016/j.compositesa.2008.05.022
Downloads
How to Cite
License
Authors who publish with this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after its publication in ETASR with an acknowledgement of its initial publication in this journal.