Chirplet Transform in Ultrasonic Non-Destructive Testing and Structural Health Monitoring: A Review

M. S. Mohammed, K. Ki-Seong

Abstract


Ultrasonic non-destructive testing signal can be decomposed into a set of chirplet signals, which makes the chirplet transform a fitting ultrasonic signal analysis and processing method. Moreover, compared to wavelet transform, short-time Fourier transform and Gabor transform, chirplet transform is a comprehensive signal approximation method, nevertheless, the former methods gained more popularity in the ultrasonic signal processing research. In this paper, the principles of the chirplet transform are explained with a simplified presentation and the studies that used the transform in ultrasonic non-destructive testing and in structural health monitoring are reviewed to expose the existing applications and motivate the research in the potential ones.


Keywords


chirplet tranform; ultrasonic; guided wave; NDT; structural health monitoring

Full Text:

PDF

References


P. J. Shull, Nondestructive Evaluation: Theory, Techniques and Applications, Marcel Dekker, 2001

C. Hellier, Handbook of Nondestructive Evaluation, McGraw-Hill, 2003

American Society for Nondestructive Testing, Nondestructive Testing Handbook Volume 7: Ultrasonic Testing, Columbus, 2007

L. W. Schmerr. Jr, J. S. Song, Ultrasonic Nondestructive Evaluation Systems: Models and Measurements, Springer, 2007

Z. Su, L. Ye, Identification of Damage Using Lamb Waves, Vol. 48, Springer London, 2009

S. K. Sin, C. H. Chen, “A comparison of deconvolution techniques for the ultrasonic nondestructive evaluation of materials”, IEEE Transactions on Image Processing, Vol. 1, No. 1, pp. 3-10, 1992

F. Honarvar, H. Sheikhzadeh, M. Moles, A. N. Sinclair, “Improving the time-resolution and signal-to-noise ratio of ultrasonic NDE signals”, Ultrasonics, Vol. 41, No. 9, pp. 755-763, 2004

H. Jin, K. Yang, S. Wu, H. Wu, J. Chen, “Sparse deconvolution method for ultrasound images based on automatic estimation of reference signals”, Ultrasonics, Vol. 67, pp. 1–8, 2016

S. J. Mirahmadi, F. Honarvar, “Application of signal processing techniques to ultrasonic testing of plates by S0 Lamb wave mode”, NDT & E International, Vol. 44, No. 1, pp. 131-137, 2011

E. P. de Moura, M. H. S. Siqueira, R. R. da Silva, J. M. A. Rebello, L. P. Caloba, “Welding defect pattern recognition in TOFD signals Part 1. Linear classifiers”, Insight-Non-Destructive Testing and Condition Monitoring, Vol. 47, No. 12, pp. 777-782, 2005

S. L. S.Lalithakumari, B. S. B.Sheelarani, B. V. B.Venkatraman, “Artificial Neural Network based Defect Detection of Welds in TOFD Technique”, International Journal of Computer Applications, Vol. 41, No. 20, pp. 17-20, 2012

G. K. Sharma, S. Bhagi, S. Thirunavukkarasu, B. P. Rao, “Wavelet transform-based approach for processing ultrasonic B-scan images”, Insight-Non-Destructive Testing and Condition Monitoring, Vol. 59, No. 2, pp. 93-99, 2017

M. S. Mohammed, K. Ki-Seong, “Signal conditioning for the recursive least-squares filter in ultrasonic testing of materials”, Insight-Non-Destructive Testing and Condition Monitoring, Vol. 59, No. 11, pp. 591-595, 2017

M. S. Mohammed, K. Ki-Seong, “Shift-invariant wavelet packet for signal de-noising in ultrasonic testing”, Insight-Non-Destructive Testing and Condition Monitoring, Vol. 54, No. 7, pp. 366-370, 2012

M. S. Mohammed, K. Ki-Seong, “Improving an adaptive filtering system for ultrasonic testing”, Insight-Non-Destructive Testing and Condition Monitoring, Vol. 56, No. 5, pp. 240-245, 2014

W. H. Prosser, M. D. Seale, B. T. Smith, “Time-frequency analysis of the dispersion of Lamb modes The Journal of the Acoustical Society of America, Vol. 105, No. 5, pp. 2669-2676, 1999

M. Niethammer, L. J. Jacobs, J. Qu, J. Jarzynski, “Time-frequency representations of Lamb waves”, The Journal of the Acoustical Society of America, Vol. 109, No. 5, pp. 1841-1847, 2001

L. De Marchi, A. Marzani, S. Caporale, N. Speciale, “Ultrasonic guided-waves characterization with warped frequency transforms”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 56, No. 10, pp. 2232-2240, 2009

S. Mann, S. Haykin, “The Chirplet Transform : A Generalization of Gabor’ s Logon Transform”, Vision Interface, Vol. 91, pp. 205-212, 1991

S. Mann, S. Haykin, “Chirplets’ and ‘warblets’: novel time–frequency methods”, Electronics Letters, Vol. 28, No. 2, pp. 114-116, 1992

S. Mann, S. Haykin, “The chirplet transform: physical considerations”, IEEE Transactions on Signal Processing, Vol. 43, No. 11, pp. 2745-2761, 1995

S. Mann, “Adaptive “chirplet” transform: an adaptivegeneralization of the wavelet transform”, Optical Engineering, Vol. 31, No. 6, pp. 1243-1256, 1992

Y. Lu, R. Demirli, “Chirplet transform for ultrasonic signal analysis and NDE applications”, IEEE Ultrasonics Symposium, Rotterdam, The Netherlands, March 6, 2006

Y. Lu, R. Demirli, G. Cardoso, J. Saniie, “A successive parameter estimation algorithm for chirplet signal decomposition”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 53, No. 11, pp. 2121-2131, 2006

R. Demirli, J. Saniie, “Model-based estimation of ultrasonic echoes. Part I: Analysis and algorithms”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 48, No. 3, pp. 787-802, 2001

R. Demirli, J. Saniie, “Model-based estimation of ultrasonic echoes. Part II: Nondestructive evaluation applications”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 48, No. 3, pp. 803-811, 2001

Y. Lu, E. Oruklu, J. Saniie, “Chirplet Signal and Empirical Mode Decompositions of Ultrasonic Signals for Echo Detection and Estimation”, Journal of Signal and Information Processing, Vol. 4, No. May, pp. 149-157, 2013

Y. Lu, R. Demirli, E. Oruklu, J. Saniie, “Estimation and classification of ultrasonic echoes backscattered from reverberant multilayered materials”, International Congress on Ultrasonics, Vienna, Austria, April 9-13, 2007

J. C. Hong, K. H. Sun, Y. Y. Kim, “Dispersion-based short-time Fourier transform applied to dispersive wave analysis”, The Journal of the Acoustical Society of America, Vol. 117, No. 5, pp. 2949-2960, 2005

H. Kuttig, M. Niethammer, S. Hurlebaus, L. J. Jacobs, “Model-based analysis of dispersion curves using chirplets”, The Journal of the Acoustical Society of America, Vol. 119, No. 4, pp. 2122-2130, 2006

S. G. Mallat, Z. Zhang, “Matching pursuits with time-frequency dictionaries”, IEEE Transactions on Signal Processing, Vol. 41, No. 12, pp. 3397-3415, 1993

A. Raghavan, C. E. S. Cesnik, “Guided-wave signal processing using chirplet matching pursuits and mode correlation for structural health monitoring”, Smart Materials and Structures, Vol. 16, No. 2, pp. 355-366, 2007

H. Zhang, C. E. S. Cesnik, “Damage characterization based on nonlinear guided wave simulation and chirplet matching pursuit algorithm”, Health Monitoring of Structural and Biological Systems XII, Denver, USA, March 4-8, 2018

F. Kerber, H. Sprenger, M. Niethammer, K. Luangvilai, L. J. Jacobs, “Attenuation Analysis of Lamb Waves Using the Chirplet Transform”, EURASIP Journal on Advances in Signal Processing, Vol. 2010, No. 1, 2010

C. Y. Kim, K. J. Park, “Mode separation and characterization of torsional guided wave signals reflected from defects using chirplet transform”, NDT & E International, Vol. 74, pp. 15-23, 2015

J. C. O’Neill, P. Flandrin, W. C. Karl, “Sparse representations with chirplets via maximum likelihood estimation”, IEEE Transactions on Signal Processing, Vol. 48, pp. 42-53, 2000

C. Y. Kim, K. J. Park, “Characterization of Pipe Defects in Torsional Guided Waves Using Chirplet Transform”, Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 24, No. 8, pp. 636–642, 2014

Y. W. Kim, K.J. Park, “Application of chirplet transform for detecting axial cracks in pipes using torsional guided modes”, Insight-Non-Destructive Testing and Condition Monitoring, Vol. 59, No. 3, pp. 138-143, 2017

L. Zeng, M. Zhao, J. Lin, W. Wu, “Waveform separation and image fusion for Lamb waves inspection resolution improvement”, NDT & E International, Vol. 79, pp. 17-29, 2016




eISSN: 1792-8036     pISSN: 2241-4487