MRI Image Segmentation Using Conditional Spatial FCM Based on Kernel-Induced Distance Measure

Authors

  • B. Gharnali Department of Computer Engineering, Islamic Azad University, Buinzahra Branch, Buinzahra, Iran
  • S. Alipour Department of Electrical and Electronic Engineering, Malek-Ashtar University of Technology, Tehran, Iran

Abstract

Fuzzy C-means (FCM) clustering is the widest spread clustering approach for medical image segmentation because of its robust characteristics for data classification. But, it does not fully utilize the spatial information and is therefore very sensitive to noise and intensity inhomogeneity in magnetic resonance imaging (MRI). In this paper, we propose a conditional spatial kernel fuzzy C-means (CSKFCM) clustering algorithm to overcome the mentioned problem. The approach consists of two successive stages. First stage is achieved through the incorporation of local spatial interaction among adjacent pixels in the fuzzy membership function imposed by an auxiliary variable associated with each pixel. The variable describes the involvement level of each pixel for construction of membership functions and different clusters. Then, we adapted a kernel-induced distance to replace the original Euclidean distance in the FCM, which is shown to be more robust than FCM. The problem of sensitivity to noise and intensity inhomogeneity in MRI data is effectively reduced by incorporating a kernel-induced distance metric and local spatial information into a weighted membership function. The experimental results show that the proposed algorithm has advantages in accuracy and robustness against noise in comparison with the FCM, SFCM and CSFCM methods on MRI brain images.

Keywords:

image segmentation, MRI, fuzzy C-means, noise

Downloads

Download data is not yet available.

References

J. S. Duncan, N. Ayache, “Medical image analysis: Progress over two decades and the challenges ahead”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, No. 1, pp. 85-106, 2000 DOI: https://doi.org/10.1109/34.824822

T. Dietenbeck, M. Alessandrini, D. Friboulet, O. Bernard, “CREASEG: a free software for the evaluation of image segmentation algorithms based on level-set”, 2010 17th IEEE International Conference on Image Processing (ICIP), Hong Kong, China, Vol. 1, No. 1, pp. 665-668, September 26-29, 2010 DOI: https://doi.org/10.1109/ICIP.2010.5652991

C. Xu, D. Pham, J. Prince, Image segmentation using deformable models. Handbook of medical imaging, Elsevier, 2000

A. W. C. Liew, S. H. Leung, W. H. Lau, “Fuzzy image clustering incorporating spatial continuity”, IEE Proceedings-Vision, Image and Signal Processing, Vol. 147, No. 2, pp. 185-192, 2000 DOI: https://doi.org/10.1049/ip-vis:20000218

D. L. Pham, “Spatial models for fuzzy clustering. Computer vision and image understanding”, Computer Vision and Image Understanding, Vol. 84, No. 2, pp. 285-297, 2001 DOI: https://doi.org/10.1006/cviu.2001.0951

A. W. Liew, H. Yan, “An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation”, IEEE Transactions on Medical Imaging, Vol. 22, No. 9, pp. 1063-1075, 2003 DOI: https://doi.org/10.1109/TMI.2003.816956

S. K. Adhikari, J. K. Sing, D. K. Basu, M. Nasipuri, “Conditional spatial fuzzy C-means clustering algorithm for segmentation of MRI images”, Applied Soft Computing, Vol. 34, pp.758-769, 2015 DOI: https://doi.org/10.1016/j.asoc.2015.05.038

J. K. Sing, S. K. Adhikari, D. K. Basu, “A modified fuzzy C-means algorithm using scale control spatial information for MRI image segmentation in the presence of noise”, Journal of Chemometrics, Vol. 29, No. 9, pp. 492-505, 2015 DOI: https://doi.org/10.1002/cem.2728

S. R. Kannan, R. Devi, S. Ramathilagam, K. Takezawa, “Effective FCM noise clustering algorithms in medical images”, Computers in biology and medicine, Vol. 43, No. 2, pp. 73-83, 2013 DOI: https://doi.org/10.1016/j.compbiomed.2012.10.002

L. Szilagyi, Z. Benyo, S. M. Szilágyi, H. Adam, “MR brain image segmentation using an enhanced fuzzy c-means algorithm”, Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 724-726, Cancun, Mexico, September 17-21, 2003

B. M. Dawant, A. P. Zijdenbos, R. A. Margolin “Correction of intensity variations in MR images for computer-aided tissue classification”, IEEE Transactions on Medical Imaging, Vol. 12, No, 4, pp. 770-781, 1993 DOI: https://doi.org/10.1109/42.251128

B. Johnston, M. S. Atkins, B. Mackiewich, M. Anderson, “Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI”, IEEE Transactions on Medical Imaging, Vol. 15, No. 2, pp. 154-169, 1996 DOI: https://doi.org/10.1109/42.491417

W. M. Wells, W. L. Grimson, R. Kikinis, F. A. Jolesz, “Adaptive segmentation of MRI data”, IEEE Transactions on Medical Imaging, Vol. 15, No. 4, pp. 429-442, 1996 DOI: https://doi.org/10.1109/42.511747

D. L. Pham, J. Prince, “An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities”, Pattern Recognition Letters, Vol. 20, No. 1, pp. 57-68, 1999 DOI: https://doi.org/10.1016/S0167-8655(98)00121-4

H. Min, X.-F. Wang, D.-S. Huang, W. Jia, “A novel dual minimization based level set method for image segmentation”, Neurocomputing, Vol. 214, pp. 910-926, 2016 DOI: https://doi.org/10.1016/j.neucom.2016.07.023

S. Niu, Q. Chen, L. de Sisternes, Z. Ji, Z. Zhou, D. Rubin, “Robust noise region-based active contour model via local similarity factor for image segmentation”, Pattern Recognition, Vol. 61, pp. 104-119, 2017 DOI: https://doi.org/10.1016/j.patcog.2016.07.022

J. Bezdek, L. Hall, L. Clarke, “Review of MR image segmentation techniques using pattern recognition”, Medical physics, Vol. 20, No. 4, pp. 1033-1048, 1993 DOI: https://doi.org/10.1118/1.597000

N. Iyer, A. Kandel, M. Schneider, “Feature-based fuzzy classification for interpretation of mammograms”, Fuzzy Sets and Systems, Vol. 114, No. 2, pp. 271-280, 2000 DOI: https://doi.org/10.1016/S0165-0114(98)00175-4

M. S. Yang, Y. J. Hu, K. C. Lin, C. C. Lin, “Segmentation techniques for tissue differentiation in MRI of ophthalmology using fuzzy clustering algorithms”, Magnetic Resonance Imaging, Vol. 20, No. 2, pp. 173-179, 2002 DOI: https://doi.org/10.1016/S0730-725X(02)00477-0

K.-R. Muller, S. Mika, G. Ratsch, K. Tsuda, B. Scholkopf, “An introduction to kernel-based learning algorithms”, IEEE Transactions on Neural Networks, Vol. 12, No. 2, pp. 181-201, 2001 DOI: https://doi.org/10.1109/72.914517

N. Cristianini, J. Shawe-Taylor, An introduction to support vector machines and other kernel-based learning methods, Cambridge University Press, 2000 DOI: https://doi.org/10.1017/CBO9780511801389

D.-Q. Zhang, S.-C. Chen , “Kernel-based fuzzy and possibilistic c-means clustering”, Proceedings of the International Conference Artificial Neural Network, Vol. 122, pp. 122-125, 2003

J. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Kluwer Academic Publishers, 1983

K. S. Chuang, H. L. Tzeng, S. Chen, J. Wu, T. J. Chen, “Fuzzy c-means clustering with spatial information for image segmentation. computerized medical imaging and graphics”, Vol. 30, No. 1, pp. 9-15, 2006 DOI: https://doi.org/10.1016/j.compmedimag.2005.10.001

Y. Shi, W. C. Karl, “A real-time algorithm for the approximation of level-set-based curve evolution”, IEEE Transactions on Image Processing, Vol. 17, No. 5, pp. 645-656, 2008 DOI: https://doi.org/10.1109/TIP.2008.920737

L. R. Dice, “Measures of the amount of ecologic association between species”, Ecology, Vol. 26, No. 3, pp. 297-302, 1945 DOI: https://doi.org/10.2307/1932409

C. A. Cocosco, V. Kollokian, R. K.-S. Kwan, G. Bruce Pike, A. C. Evans, “Brainweb: Online interface to a 3D MRI simulated brain database”, Neuro Image, 1997

T. F. Chan, L. A. Vese, “Active contours without edges”. IEEE Transactions on Image Processing, Vol. 10, No. 2, pp. 266-277, 2001 DOI: https://doi.org/10.1109/83.902291

O. Bernard, D. Friboulet, P. Thévenaz, M. Unser, “Variational B-spline level-set: a linear filtering approach for fast deformable model evolution”, IEEE Transactions on Image Processing, Vol. 18, No. 6, 1179-1191, 2009 DOI: https://doi.org/10.1109/TIP.2009.2017343

E .Nadernejad, S. Sharifzadeh, “A new method for image segmentation based on Fuzzy C-means algorithm on pixonal images formed by bilateral filtering”, Signal, Image and Video Processing, Vol. 7, No. 5, pp. 855-863, 2013 DOI: https://doi.org/10.1007/s11760-011-0274-0

S. Hu, E. A. Hoffman, J. M. Reinhardt, “Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images”, IEEE Transactions on Medical Imaging, Vol. 20, No. 6, pp. 490-498, 2001 DOI: https://doi.org/10.1109/42.929615

R. Chan, H. Yang, T. Zeng, “A two-stage image segmentation method for blurry images with Poisson or multiplicative gamma noise”, SIAM Journal on Imaging Sciences, Vol. 7, No. 1, pp. 98-127, 2014 DOI: https://doi.org/10.1137/130920241

M. Droske, B. Meyer, M. Rumpf, C. Schaller, “An adaptive level set method for medical image segmentation”, Lecture Notes in Computer Science, Vol. 2082, pp. 416-422, Springer, Berlin, Heidelberg, 2001 DOI: https://doi.org/10.1007/3-540-45729-1_43

C. Li, C.-Y. Kao, J. C. Gore, Z. Ding, “Minimization of region-scalable fitting energy for image segmentation”, IEEE Transactions on Image Processing, Vol. 17, No. 10, pp. 1940-1949, 2008 DOI: https://doi.org/10.1109/TIP.2008.2002304

J. C. Bezdek, J. Keller, R. Krisnapuram, N. Pal, Fuzzy models and algorithms for pattern recognition and image processing, Springer Science & Business Media, Vol. 4, 1999 DOI: https://doi.org/10.1007/b106267

D. -Q. Zhang, S.-C. Chen , “A novel kernelized fuzzy c-means algorithm with application in medical image segmentation”, Artificial Intelligence in Medicine, Vol. 32, No. 1, pp. 37-50, 2004 DOI: https://doi.org/10.1016/j.artmed.2004.01.012

Downloads

How to Cite

[1]
Gharnali, B. and Alipour, S. 2018. MRI Image Segmentation Using Conditional Spatial FCM Based on Kernel-Induced Distance Measure. Engineering, Technology & Applied Science Research. 8, 3 (Jun. 2018), 2985–2990. DOI:https://doi.org/10.48084/etasr.1999.

Metrics

Abstract Views: 847
PDF Downloads: 445

Metrics Information