Experimental Evaluation of a Flat Plate Solar Collector Under Hail City Climate
Abstract
Flat plate solar water heaters are widely used for water heating in low-temperature residential applications. In this paper the thermal performance of a solar flat plate water heater under Hail weather conditions (latitude 27°52΄N longitude 41°69΄E) was experimentally investigated. Fluid was circulated through the imbedded copper tubes in the flat plate collector and inlet and outlet temperatures of the fluid were noted at five minute intervals. The experimental-time was between 9:00AM-15:00PM. A study was carried out experimentally to present the efficiency curves of a flat plate solar collector at different flow rates. ASHRAE standard 93-2003 was followed for calculation of instantaneous efficiency of solar collector. Result shows that the flow rate of the circulating fluid highly influence the thermal efficiency of the solar collector. Optimum flow rate of 2.5L/min leads to maximum collector efficiency.
Keywords:
flat plate solar collector, low rate, thermal efficiency, ASHRAE standard 93-2003Downloads
References
Y. Tian, C. Y. Zhao, “A review of solar collectors and thermal energy storage in solar thermal applications”, Applied Energy, Vol. 104, pp. 538-553, 2013 DOI: https://doi.org/10.1016/j.apenergy.2012.11.051
S. Suman, M. K. Khan, M. Pathak, “Performance enhancement of solar collectors—A review”, Renewable and Sustainable Energy Reviews, Vol. 49, pp. 192-210, 2015 DOI: https://doi.org/10.1016/j.rser.2015.04.087
X. Xu, Y. Lei, Z. Xiaosong, P. Donggen, “Review on the Development of Flat-Plate Solar Collector and its Building-Integrated Designing”, ISES World Congress 2007 (Vol. I – Vol. V), pp. 623-626, Springer, Berlin, Heidelberg, 2008 DOI: https://doi.org/10.1007/978-3-540-75997-3_115
M. J. Muhammad, I. A. Muhammad, N. A. Che Sidik, M. N. A. W. Muhammad Yazid, “Thermal performance enhancement of flat-plate and evacuated tube solar collectors using nanofluid: a review”, International Communications in Heat and Mass Transfer, Vol. 76, pp. 6–15, 2016 DOI: https://doi.org/10.1016/j.icheatmasstransfer.2016.05.009
G. Iordanou, “Experimental Investigations using partial Porous Medium inside the Channels of Flat Plate Solar Water Collectors”, Journal of Engineering Science and Technology Review, Vol. 5, No. 1, pp. 30-33, 2012 DOI: https://doi.org/10.25103/jestr.051.06
M. Sahib Ali, “Experimental Study of Solar Hot Water System Design”, ThiQar University Journal for Engineering Sciences, Vol. 3, No. 1, pp. 1–14, 2012
A. Alvarez, O. Cabeza, M. C. Muniz, L. M. Varela, “Experimental and numerical investigation of a flat-plate solar collector”, Energy, Vol. 35, No. 9, pp. 3707-3716, 2010 DOI: https://doi.org/10.1016/j.energy.2010.05.016
O. Mahian, A. Kianifar, S. A. Kalogirou, I. Pop, S. Wongwises, “A review of the applications of nanofluids in solar energy”, International Journal of Heat and Mass Transfer, Vol. 57, No. 2, pp. 582–94, 2013 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.037
American Society of Heating, Refrigerating & Air Conditioning Engineers, Standard 93-2003, Methods of testing to determine the thermal performance of solar collectors, ASHRAE, 2003
Downloads
How to Cite
License
Authors who publish with this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after its publication in ETASR with an acknowledgement of its initial publication in this journal.