Prediction of Corner Columns’ Load Capacity Using Composite Material Analogy
Abstract
There are numerous reasons for which concrete has become the most widely used construction material in buildings, one of them being its availability in different types, such as fiber-reinforced, lightweight, high strength, conventional and self-compacting concrete. This advantage is specially realized in high-rise building construction, where common construction practice is to use concretes of different types or strength classes in slabs and columns. Columns in such structures are generally made from concrete which is higher in compressive strength than the one used in floors or slabs. This raises issue of selection of concrete strength that should be used for estimating column capacity. Current paper tries to address this issue by testing nine (09) sandwich column specimens under axial loading. The floor concrete portion of the sandwich column was made of normal strength concrete, whereas column portions from comparatively higher strength concrete. Test results show that aspect ratio (h/b) influences the effective concrete strength of such columns. A previously adopted methodology of composite material analogy with some modifications has been found to predict well the capacity of columns where variation in floor and concrete strength is significant.
Keywords:
composite material analogy, sandwich columns, corner columns, axial loadingDownloads
References
ACI Committee 363, “Report on High-Strength Concrete (ACI 363R-10)”, in: ACI Manual of Concrete Practice, American Concrete Institute, 2013
ACI 318-14, Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, 2014
A. C. Bianchini, R. E. Woods, C. E. Kesler, “Effect of Floor Concrete Strength on Column Strength,” ACI Journal, Vol. 31, No. 11, pp. 1149–1169, 1960
J. K. Wight, Reinforced concrete : mechanics and design,Pearson, 2016
M. K. Kayani, “Load Transfer from High-Strength Concrete Columns through Lower Strength Concrete Slabs”, University of Illinois, 1992
J. H. Lee, Y. S. Yoon, W. D. Cook, D. Mitchell, “Benefits of using puddled HSC with fibers in slabs to transmit HSC column loads”, Journal of Structural Engineering, Vol. 133, No. 12, pp. 1843–1847, 2007 DOI: https://doi.org/10.1061/(ASCE)0733-9445(2007)133:12(1843)
S. C. Lee, P. Mendis, “Behavior of high-strength concrete corner columns intersected by weaker slabs with different thicknesses”, ACI Structural Journal, Vol. 101, No. 1, pp. 11–18, 2004 DOI: https://doi.org/10.14359/12993
A. A. Shah, Y. Ribakov, “Estimation of RC slab-column joints effective strength using neural networks”, Latin American Journal of Solids and Structures, Vol. 8, No. 4, pp. 393–411, 2011 DOI: https://doi.org/10.1590/S1679-78252011000400002
I. Shahid, S. H. Farooq, N. A. Qureshi, K. R. Kayani, H. Mumtaz, “Effective Concrete Strength within Slab- Column Joint”, International Journal of Engineering and Technology Vol. 7, No. 3, pp. 965–972, 2015
J.-H. Lee, Y.-S. Yoon, “Prediction of effective compressive strength of corner columns comprising weaker slab–column joint”, Magazine of Concrete Research, Vol. 64, No. 12, pp. 1113–1121, 2012 DOI: https://doi.org/10.1680/macr.11.00196
C.-C. Shu, N. M. Hawkins, “Behavior of Columns Continuous through Concrete Floors”, ACI Structural Journal,Vol. 89, No. 4, pp. 405–414, 1993 DOI: https://doi.org/10.14359/3023
A. A. Shah, J. Dietz, N. V Tue, G. Koenig, “Experimental investigation of column-slab joints”, ACI Structural Journal, Vol. 102, No. 1, pp. 103–113, 2005 DOI: https://doi.org/10.14359/13535
R. F. Gibson, Principles of composite material mechanics, McGraw-Hill, 1994
P. J. McHarg, W. D. Cook, D. Mitchell, Y. S. Yoon, “Improved transmission of high-strength concrete column loads through normal strength concrete slabs”, Structural Journal,Vol. 97, No. 1, pp. 157–165, 2000 DOI: https://doi.org/10.14359/845
Downloads
How to Cite
License
Authors who publish with this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after its publication in ETASR with an acknowledgement of its initial publication in this journal.