A Global Online Handwriting Recognition Approach Based on Frequent Patterns
Abstract
In this article, the handwriting signals are represented based on geometric and spatio-temporal characteristics to increase the feature vectors relevance of each object. The main goal was to extract features in the form of a numeric vector based on the extraction of frequent patterns. We used two types of frequent motifs (closed frequent patterns and maximal frequent patterns) that can represent handwritten characters pertinently. These common features patterns are generated from a raw data transformation method to achieve high relevance. A database of words consisting of two different letters was created. The proposed application gives promising results and highlights the advantages that frequent pattern extraction algorithms can achieve, as well as the central role played by the “minimum threshold” parameter in the overall description of the characters.
Keywords:
frequent features, mining frequent patterns, spatio-temporal relations, minimum threshold, online handwriting recognitionDownloads
References
I. Degtyarenko, O. Radyvonenko, K. Bokhan, V. Khomenko, “Text/shape classifier for mobile applications with handwriting input”, International Journal on Document Analysis and Recognition, Vol. 19, No. 4, pp. 369-379, 2016 DOI: https://doi.org/10.1007/s10032-016-0276-0
N. Dounskaia, A. W. Van Gemmert, B. C. Leis, G. E. Stelmach, “Biased wrist and finger coordination in Parkinsonian patients during performance of graphical tasks”, Neuropsychologia, Vol. 47, No. 12, pp. 2504-2514, 2009 DOI: https://doi.org/10.1016/j.neuropsychologia.2009.04.020
M. S. Julius, R. Meir, Z. Shechter-Nissim, E. Adi-Japha, “Children's ability to learn a motor skill is related to handwriting and reading proficiency”, Learning and Individual Differences, Vol. 51, pp. 265-272, 2016 DOI: https://doi.org/10.1016/j.lindif.2016.08.034
J. Shin, T. Okuyama, “Detection of alcohol intoxication via online handwritten signature verification”, Pattern Recognition Letters , Vol. 35, pp. 101–104, 2014 DOI: https://doi.org/10.1016/j.patrec.2012.07.016
V. Paz-Villagrán, J. Danna, J.-L. Velay, “Lifts and stops in proficient and dysgraphic handwriting”, Human Movement Science, Vol. 33, pp. 381-394, 2014 DOI: https://doi.org/10.1016/j.humov.2013.11.005
T. Deselaers, D. Keysers, J. Hosang, H. A. Rowley, “GyroPen: Gyroscopes for Pen-Input With Mobile Phones”, IEEE Transactions on Human-Machine Systems, Vol. 45, No. 2, pp. 263-271, 2015 DOI: https://doi.org/10.1109/THMS.2014.2365723
M. Young, The Technical Writer’s Handbook. Mill Valley, CA: University Science, 1989
B. Q. Huang, Y. B. Zhang, M. T. Kechadi, “Preprocessing Techniques for Online Handwriting Recognition”, Seventh International Conference on Intelligent Systems Design and Applications (ISDA 2007), Rio de Janeiro, Brazil, pp. 793-800, October 20-24, 2007 DOI: https://doi.org/10.1109/ISDA.2007.31
M. A. Abuzaraida, A. M. Zeki, A. M. Zeki, “Online Recognition System for Handwritten Hindi Digits Based on Matching Alignment Algorithm”, 3rd International Conference on Advanced Computer Science Applications and Technologies, Amman, Jordan, pp. 168-171, December 29-30, 2014 DOI: https://doi.org/10.1109/ACSAT.2014.36
M. E. Mustafa, H. A. A. Alshafy, “Characters' boundaries based segmentation for online Arabic handwriting”, International Conference on Computing, Electrical and Electronic Engineering (ICCEEE), Khartoum, Sudan, pp. 306-310, August 26-28, 2013 DOI: https://doi.org/10.1109/ICCEEE.2013.6633952
C. De Stefano, M. Garruto, A. Marcelli, “A multiresolution approach to on-line handwriting segmentation and feature extraction”, IEEE 17th International Conference on Pattern Recognition (ICPR 2004), Vol. 2, pp. 614-617, 2004 DOI: https://doi.org/10.1109/ICPR.2004.1334323
Y. Jiang, X. Wang, X. Ao, G. Dai, “Online Recognition of Handwritten Chemical Formula”, 2nd Joint Conference on Harmonious Human Machine Environment. Hangzhou, China, pp. 111-115, 2006
L. Zhao, H. Yan, G. Shi, J. Yang, “Segmentation of Connected Symbols in Online Handwritten Chemical Formulas”, International Conference on System Science, Engineering Design and Manufacturing Informatization (ICSEM), Yichang, China, pp. 278-281, November 12-14, 2010 DOI: https://doi.org/10.1109/ICSEM.2010.82
M. Cheriet, N. Kharma, C. Liu, C. Suen, Character Recognition Systems: A Guide for Students and Practitioners, John Wiley & Sons, 2007 DOI: https://doi.org/10.1002/9780470176535
O. Maimon, L. Rokach, Data Mining and Knowledge Discovery Handbook, Springer Science+Business Media, Inc, 2005 DOI: https://doi.org/10.1007/b107408
U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy Advances in Knowledge Discovery and Data Mining, AAAI Press, 1996
S. Mitra, T. Acharya, Data Mining Multimedia, Soft Computing and Bioinformatics, John Wiley & Sons, 2003
R. Agrawal, T. Imielinski, A. Swami, “Mining Association Rules Between Sets of Items in Large Databases”, in: SIGMOD '93: Proceedings of the 1993 ACM SIGMOD international conference on Management of data, pp. 207-216, ACM, 1993 DOI: https://doi.org/10.1145/170035.170072
M. J. Zaki, C.-J. Hsiao, “ChARM: An efficient algorithm for closed itemset mining”, in: 2002 SIAM International Conference on Data Mining, pp. 457-473, SIAM, 2002 DOI: https://doi.org/10.1137/1.9781611972726.27
L. Szathmary, “Symbolic Data Mining Methods with the Coron Platform”, PhD Thesis, Henri Poincaré University, 2002
S. Dutta Chowdhury, U. Bhattacharya, S. K. Parui, “Online Handwriting Recognition Using Levenshtein Distance Metric”, 12th International Conference on Document Analysis and Recognition, Washington DC, USA, August 25-28, 2013 DOI: https://doi.org/10.1109/ICDAR.2013.24
M. Mori, S. Uchida, H. Sakano, “Global feature for online character recognition”, Pattern Recognition Letters, Vol. 35, pp. 142-148, 2013 DOI: https://doi.org/10.1016/j.patrec.2013.03.036
S. Dewangan, P. K. Gupta, U. K. Sahu, I. K. Verma, “Realtime Recognition of Handwritten Words using Hidden Markov Model”, International Journal of Technological Synthesis and Analysis, Vol. 1, No. 1, pp. 7-9, 2012
V. Vuori, M. Aksela, J. Laaksonen, E. Oja, “On-line recognition of handwritten characters”, in: Biennial Report, Laboratory of Computer and Information Science, Neural Networks Research Centre, Helsinki University of Technology, 2003
N. B. Amara, A. Belaïd, N. Ellouze, “Utilisation des modèles markoviens en reconnaissance de l'écriture arabe : état de l'art”, Colloque International Francophone sur l'Ecrit et le Document - CIFEd'00, Lyon, France, July, 2000
K. P. Primekumar, S. M. Idiculla, “On-line Malayalam Handwritten Character Recognition using HMM and SVM”, International Conference on Signal Processing, Image Processing and Pattern Recognition (ICSIPR), Coimbatore, India, February 7-8, 2013 DOI: https://doi.org/10.1109/ICSIPR.2013.6497991
S.-J. Cho, J. H. Kim, “A Bayesian Network Approach for On-line Handwriting Recognition”, in: Digital Document Processing. Advances in Pattern Recognition, pp. 121-141, 2007 DOI: https://doi.org/10.1007/978-1-84628-726-8_6
N. Tagougui, H. Boubaker, M. Kherallah, A. M. Alimi, “A hybrid MLPNN/HMM recognition system for online Arabic Handwritten script”, World Congress on Computer and Information Technology (WCCIT), Sousse, Tunisia, June 22-24, 2013 DOI: https://doi.org/10.1109/WCCIT.2013.6618744
H. El Abed, M. Kherallah, V. Margner, A. M. Alimi, “On-line Arabic handwriting recognition competition: ADAB database and participating systems”, International Journal on Document Analysis and Recognition, Vol. 14, No. 1, pp. 15-23, 2011 DOI: https://doi.org/10.1007/s10032-010-0124-6
I. Ota, R. Yamamoto, S. Sako, S. Sagayama,“On-line Handwritten Kanji Recognition Based on Inter-stroke Grammar”, IEEE 9th International Conference on Document Analysis and Recognition (ICDAR 2007), Vol. 2, pp. 1188-1192, 2007 DOI: https://doi.org/10.1109/ICDAR.2007.4377103
F. Alvaro, J.-A. Sanchez, J.-M. Benedí, “Recognition of on-line handwritten mathematical expressions using 2D stochastic context-free grammars and hidden Markov models”, Pattern Recognition Letters, Vol. 35, pp. 58-67, 2014 DOI: https://doi.org/10.1016/j.patrec.2012.09.023
Downloads
How to Cite
License
Authors who publish with this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after its publication in ETASR with an acknowledgement of its initial publication in this journal.