Anti-Swing Fuzzy Controller Applied in a 3D Crane System
Abstract
It is well known that fuzzy logic can be used in the control of complex systems described by highly nonlinear mathematical models. However, the main difficulty in the design of a fuzzy controller comes with the adjustment of the controller’s parameters that are usually determined by human experts’ knowledge or trial and error methods. In this paper, we describe an implementation of fuzzy logic in order to reduce oscillations during the positioning of a 3D crane system. The fuzzy controller’s structure is quite simple, requiring only two input variables. The proposed fuzzy controller has been applied to an experimental laboratory framework and results show that oscillations are significantly reduced.
Keywords:
fuzzy controller, anti-swing control, 3D crane systemDownloads
References
Inteco, 3D Crane System-User’s Manual, available at www.inteco.com.pl, 2008
F. L. Lewis, T. Parisini, “Neural network feedback control with guaranteed stability”, Int. J. Control, Vol. 70, pp. 341-362, 1998 DOI: https://doi.org/10.1080/002071798222262
M. Takegaki, S. Arimoto, “A new feedback method for dynamic control of manipulator”, ASME J. Dynamic Syst. Measurement, and Contr., Vol. 103, pp. 119-125, 1981 DOI: https://doi.org/10.1115/1.3139651
J. W. Beeston, “Closed-loop time optimal control of a suspended payload-a design study”, 4th IFAC World Congress, Warsaw, Poland, pp. 85-99, 1969
Y. Sakawa, Y. Shindo, “Optimal control of container cranes”, Automatica, Vol. 18, No. 3, pp. 257-266, 1982 DOI: https://doi.org/10.1016/0005-1098(82)90086-3
M. W. Noakes, J. F. Jansen, “Generalized input for damped-vibration control of suspended payloads”, Journal of Robotics and Autonomous Systems, Vol. 10, No. 2, pp. 199-205, 1992 DOI: https://doi.org/10.1016/0921-8890(92)90026-U
G. Corriga, A. Giua, G. Usai, “An implicit gain-scheduling controller for cranes”, IEEE Trans. Control Systems Technology, Vol. 6, No. 1, pp. 15- 20, 1998 DOI: https://doi.org/10.1109/87.654873
O. Sawodny, H. Aschemann, S. Lahres, “An automated gantry crane as a large workspace robot”, Control Engineering Practice, Vol. 10, No. 12, pp. 1323-1338, 2002 DOI: https://doi.org/10.1016/S0967-0661(02)00097-7
A. Bara, S. Dale, Z. T. Nagy, “Comparative real-time experimental study case for control algorithms, from implementation point of view”, Proceedings of the 8th WSEAS International Conference on System Science and Simulation in Engineering, Wisconsin, USA, pp. 302-306, 2009
J. A .Mendez, L. Acosta, L. Moreno, S. Torres, G.N.Marichal, “An application of a neural self-tuning controller to an overhead crane”, Neural Computing and Applications, Vol. 8, No. 2, pp. 143-150, 1999 DOI: https://doi.org/10.1007/s005210050016
D. Antic, S. Nikolic, S. Peric, M. Milojkovic, M. Milosevic, “Genetic algorithms applied in positioning 3D Crane System”, 55th Conference ETRAN, Banja Vrućica (Teslić), Bosnia and Herzegovina, pp. AU5.4-1.4, 2011
H. -H. Lee, Y. Liang, D. Segura, “A sliding-mode antiswing trajectory control for overhead cranes with high-speed load hoisting”, Journal of Dynamic Systems, Measurement, and Control, Vol. 128, No. 4, pp. 842-846, 2006 DOI: https://doi.org/10.1115/1.2364010
S. K. Cho, H. H. Lee, “A fuzzy-logic antiswing controller for three dimensional overhead cranes”, ISA Trans., Vol. 41, No. 2, pp. 235-243, 2002 DOI: https://doi.org/10.1016/S0019-0578(07)60083-4
W. Singhose, W. Seering, N. Singer, “Residual vibration reduction using vector diagrams to generate shaped inputs”, Journal of Dynamic Systems, Measurement, and Control, Vol. 116, No. 2, pp. 654 -659, 1994 DOI: https://doi.org/10.1115/1.2919428
H. H. Lee, “A new motion-planning scheme for overhead cranes with high-speed hoisting”, Journal of Dynamic Systems, Measurement, and Control, Vol. 126, No. 2, pp. 359-364, 2004 DOI: https://doi.org/10.1115/1.1767855
K. A. Moustafa, A. M. Ebeid, “Nonlinear modeling and control of overhead crane load sway”, Journal of Dynamic Systems, Measurement, and Control, Vol. 110, No. 3, pp. 266-271, 1988 DOI: https://doi.org/10.1115/1.3152680
J. Yu, F.L. Lewis, T. Huang, “Nonlinear feedback control of a gantry crane”, American Control Conference, Seattle, USA, pp. 4310-4315, 1995
Z. Jovanovic, D. Antic, Z. Stajic, M. Milosevic, S. Nikolic, S. Peric, “Genetic algorithms applied in parameters determination of the 3D crane model”, FACTA UNIVERSITATIS Series: Automatic Control and Robotics, vol. 10, no. 1, pp. 19-27, 2011
Downloads
How to Cite
License
Authors who publish with this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after its publication in ETASR with an acknowledgement of its initial publication in this journal.