An Investigation of the Effect of Different Nanofluids in a Solar Collector

H. A. Fakhim

Abstract


In this article, we examine the use of different nanofluids in a solar collector in a parabolic form. Temperature, thermal efficiency and outlet average temperature for a conventional parabolic collector and a collector with nanofluid are compared. The effect of various parameters (concentration ratio, volume fraction of nanoparticles, absorption and fluid velocity) are studied. Results are discussed and it is shown that nano fluid increases the efficiency of the collector.


Keywords


nanofluid; water; solar collector; thermal efficiency; Numerical Analysis

Full Text:

PDF

References


A. W. Badar, R. Buchholz, F. Ziegler, “Experimental and theoretical evaluation of the overall heat loss coefficient of vacuum tubes of a solar collector”, Solar Energy, Vol. 85, pp.1447–1456, 2011

I. Budihardjo, G. L. Morrison, M. Behnia, “Natural circulation flow through water in glass evacuated tube solar collectors”, Solar Energy, Vol. 81, pp. 1460–1472, 2007

F. Jorge, O. Armando, “Numerical simulation of a trapezoidal cavity receiver for a linear Fresnel solar collector concentrator”, Journal of Renewable Energy, Vol. 36, pp. 90–96, 2011

K. Sopian, M. Syahri, S. Abdullah, M. Y. Othman, B. Yatim, “Performance of a non-metallic unglazed solar water heater with integrated storage system”, Renewable Energy, Vol. 29, pp.1421–1430, 2004

R. S. R. Gorla, “Finite element analysis of a flat plate solar collector”, Finite Elements in Analysis and Design, Vol. 24, pp. 283-290, 2010

M. Selmi, M. J. Al-Khawaja, A. Marafia, “Validation of CFD simulation for flat plate solar energy collector”, Renewable Energy, Vol. 33, pp. 383-387, 2008

A. Kahrobaian, H. Malekmohammadi “Exergy Optimization Applied to Linear Parabolic Solar Collectors”, Journal of Faculty of Engineering, Vol. 42, No. 1, pp. 131-144, 2008

T. P. Otanicar, P. E. Phelan, R. S. Prasher, G. Rosengarten, R. A. Taylor, “Nanofluid-based direct absorption solar collector”, Journal of Renewable and Sustainable Energy, Vol. 2, No. 3, p. 033102, 2010

T. Yousefi, F. Veysi, E. Shojaeizadeh, S. Zinadini, “An experimental investigation on the effect of pH variation of MWCNT–H2O nanofluid on the efficiency of a flat-plate solar collector”, Solar Energy, Vol. 86, No. 2, pp. 771-779, 2012

M. F. Modest, Radiative Heat Transfer, Academic Press, 2003

A. Kasaeian, A. Mohmmadkarim, A. Kaabinejadian, “Performance investigation of solar evacuated tube collector using TRNSYS in Tehran”, International Journal of Renewable Energy Research, Vol. 4, No. 2, pp. 497-503, 2014

F. P. Incropera, D. P. De Witt, Fundamentals of Heat and Mass Transfer, Wiley and Sons, New York, 2007

H. Tyagi, P. Phelan, R. Prasher, “Predicted efficiency of a Low-temperature Nanofluid-based direct absorption solar collector”, ASME Journal of Solar Energy Engineering, Vol. 131, No. 4, pp. 0410041- 0410047, 2009

S. K. Das, S. U. Choi, W. Yu, T. Pradeep, Nanofluids: Science and Technology, Wiley and Sons, New York, 2008

Z. Li, C. Chen, H. Luo, Y. Zhang, Y. Xue, “All-glass vacuum tube collector heat transfer model used in forced-circulation solar water heating system”, Solar Energy, Vol. 84, pp. 1413-1421, 2010




eISSN: 1792-8036     pISSN: 2241-4487