A Study of the Effective Lifetime of Aluminum Buckets Used in Blood Bank Centrifuges


  • M. F. Tafti Blood Transfusion Research Center, Inst. of Research & Education in Transfusion Medicine, Tehran, Iran
  • R. Golestani Sina Ebtekar Company, Tehran, Iran
  • M. Salari Department of Mechanical Engineering, Imam Hossein University, Tehran, Iran
Volume: 7 | Issue: 4 | Pages: 1797-1801 | August 2017 | https://doi.org/10.48084/etasr.1268


Rotating parts of blood bank centrifuges are under heavy mechanical cyclic stresses due to their centrifugal loading conditions. Estimating the effective lifetime for these parts is very important for their application. Providing safety requirements for these components is mandatory in blood transfusion centers (BTC). Failure occurs in the engineering parts for both loading conditions of steady and cyclic. The fatigue phenomenon is the main reason for mechanical failures at least in 90 % of fractures during operation. In this paper, the effects of fatigue caused by centrifugal loadings on aluminum buckets produced by the Iranian Sina Ebtekar Company (ISECo) are investigated experimentally. In this study, 48 aluminum buckets are chosen from a set of 500 buckets. The numbers of service of the samples are accounted for a period of 7 months. Finite element analysis, FEM, is done for an aluminum bucket and the relevant maximum stresses due to the rotating loads of centrifugation are determined. Analyzing the numerical results and using the fatigue, lifetime diagrams according to the number of operating cycles is presented for the samples. A good consistency is observed between the experimental and numerical results. Based on the results, a new correlation is presented for estimating the aluminum bucket’s lifetime made by ISECO.


failure, FEM, fatigue, lifetime, aluminum buckets, blood bank centrifuges


Download data is not yet available.


A. P. Parker, “Stress intensity factors, crack profiles, and fatigue crack growth rates in residual stress fields” in Residual Stress Effects in Fatigue, ASTM International, 1982

G. E. Dieter, D. J. Bacon, Mechanical metallurgy, Vol. 3, McGraw-Hill New York, 1986

H. Pfister, K. H. Braun, “Induction of correct centrifugal force in a rotating mass shell”, Class. Quantum Gravity, Vol. 2, No. 6, p. 909, 1985 DOI: https://doi.org/10.1088/0264-9381/2/6/015

F. J. Casson, A. G. Peeters, C. Angioni, Y. Camenen, W. A. Hornsby, A. P. Snodin, G. Szepesi, "Gyrokinetic simulations including the centrifugal force in a rotating tokamak plasma”, Phys. Plasmas, Vol. 17, No. 10, p. 102305, 2010 DOI: https://doi.org/10.1063/1.3491110

B. Vonnegut, “Rotating bubble method for the determination of surface and interfacial tensions,” Rev. Sci. Instrum., Vol. 13, No. 1, pp. 6–9, 1942 DOI: https://doi.org/10.1063/1.1769937

H. R. Vosoughifar, M. A. Naderi, “Numerical Analysis of the Base-Isolated Rectangular Storage Tanks under Bi-directional Seismic Excitation”, British Journal of Mathematics & Computer Science, Vol. 4, No. 21, pp. 3054–3067, 2014 DOI: https://doi.org/10.9734/BJMCS/2014/11299

B. Ikhajiagbe, G. O. Anoliefo, E. O. Oshomoh, U. A. Ogedegbe, N. Airhienbuwa, “Changes in Polyaromatic Hydrocarbon Content of a Waste Engine Oil Polluted Soil Exposed to pH Adjustments”, Annu. Rev. Res. Biol., Vol. 2, No. 3, pp. 66–82, 2012 DOI: https://doi.org/10.9734/BBJ/2013/2374

N. Özkaya, M. Nordin, D. Goldsheyder, D. Leger, Fundamentals of biomechanics: equilibrium, motion, and deformation. Springer Science & Business Media, 2012 DOI: https://doi.org/10.1007/978-1-4614-1150-5

U. Beck, G. Reiners, D. Lerche, U. Rietz, H. Niederwald, “Quantitative adhesion testing of optical coatings by means of centrifuge technology”, Surf. Coatings Technol., Vol. 205, pp. S182–S186, 2011 DOI: https://doi.org/10.1016/j.surfcoat.2011.02.016

J. C. Q. Amado, “Manufacture and testing of lightweight tubes for rocketry and centrifuges”, Light. Compos. Struct. Transp. Des. Manuf. Anal. Perform., p. 421, 2016 DOI: https://doi.org/10.1016/B978-1-78242-325-6.00017-7

S. Kamandulis, T. Venckunas, A. Snieckus, E. Nickus, J. Stanislovaitiene, A. Skurvydas, “Changes of vertical jump height in response to acute and repetitive fatiguing conditions,” Science & Sports, Vol. 31, No. 6, pp. e163-e171, 2016 DOI: https://doi.org/10.1016/j.scispo.2015.11.004

M. Tunali, H. Özdemir, Z. Küçükodaci, S. Akman, E. Öncü, M. Aydınbelge, M. Akman, E. Firatli, “A New Centrifugation Method for the Improvement of Platelet-rich Fibrin Products: A Preliminary Study”, Br. J. Med. Med. Res., Vol. 13, No. 6, pp. 1–10, 2016 DOI: https://doi.org/10.9734/BJMMR/2016/23939

S. Kabir, T. I. Yeo, “Characterization of Low-cycle Fatigue Parameters”, Br. J. Appl. Sci. Technol., Vol. 12, No. 3, pp. 1–15, 2016 DOI: https://doi.org/10.9734/BJAST/2016/20658

M. R. Mitchell, R. W. Landgraf (eds), Advances in Fatigue Lifetime Predictive Techniques, American Society for Testing and Materials, 1993 DOI: https://doi.org/10.1520/STP1211-EB

X. Hai-jun, S. Jian, “Failure analysis and optimization design of a centrifuge rotor”, Eng. Fail. Anal., Vol. 14, No. 1, pp. 101–109, 2007 DOI: https://doi.org/10.1016/j.engfailanal.2005.12.007

H. Kamata, H. Mashimo, “Centrifuge model test of tunnel face reinforcement by bolting”, Tunn. Undergr. Sp. Technol., Vol. 18, No. 2, pp. 205–212, 2003 DOI: https://doi.org/10.1016/S0886-7798(03)00029-4

W. A. Take, M. D. Bolton, “The use of centrifuge modelling to investigate progressive failure of overconsolidated clay embankments”, in Constitutive and Centrifuge Modelling: Two Extremes, Taylor & Francis, 2002

A. Grm, M. Batista, “On the coupling of analytical and FEM solution in stress analysis around the polygonal hole shape in a finite two-dimensional domain”, Int. J. Mech. Sci., Vol. 118, pp. 254–267, 2016 DOI: https://doi.org/10.1016/j.ijmecsci.2016.09.037

S. M. Jang, H. W. Cho, S. K. Choi, “Design and analysis of a high-speed brushless DC motor for centrifugal compressor”, IEEE Trans. Magn., Vol. 43, No. 6, pp. 2573–2575, 2007.

P. Jeanjean, “Re-assessment of py curves for soft clays from centrifuge testing and finite element modeling”, Offshore Technology Conference, 2009 DOI: https://doi.org/10.4043/20158-MS

F. McKenna, M. H. Scott, G. L. Fenves, “Nonlinear finite-element analysis software architecture using object composition”, J. Comput. Civ. Eng., Vol. 24, No. 1, pp. 95–107, 2009 DOI: https://doi.org/10.1061/(ASCE)CP.1943-5487.0000002

D. Wang, D. J. White, M. F. Randolph, “Large-deformation finite element analysis of pipe penetration and large-amplitude lateral displacement”, Can. Geotech. J., Vol. 47, No. 8, pp. 842–856, 2010 DOI: https://doi.org/10.1139/T09-147

I. Anastasopoulos, G. Gazetas, M. F. Bransby, M. C. R. Davies, A. El Nahas, “Fault rupture propagation through sand: finite-element analysis and validation through centrifuge experiments”, J. Geotech. Geoenvironmental Eng., Vol. 133, No. 8, pp. 943–958, 2007 DOI: https://doi.org/10.1061/(ASCE)1090-0241(2007)133:8(943)

D. Forsström, P. Jonsén, “Calibration and validation of a large scale abrasive wear model by coupling DEM-FEM: Local failure prediction from abrasive wear of tipper bodies during unloading of granular material”, Eng. Fail. Anal., Vol. 66, pp. 274–283, 2016 DOI: https://doi.org/10.1016/j.engfailanal.2016.04.007

S. Asiri, “Modal and Vibration Analysis of Functionally Graded Dental Implant”, Br. J. Med. Med. Res., Vol. 12, No. 7, pp. 1–14, 2016 DOI: https://doi.org/10.9734/BJMMR/2016/22139

D. G. Ullman, The mechanical design process, Vol. 2. McGraw-Hill New York, 1992.

D. S. MacKenzie, G. E. Totten, Analytical characterization of aluminum, steel, and superalloys. CRC press, 2005 DOI: https://doi.org/10.1201/9781420030365

J. E. Shigley, Shigley’s mechanical engineering design. Tata McGraw-Hill Education, 2011


How to Cite

M. F. Tafti, R. Golestani, and M. Salari, “A Study of the Effective Lifetime of Aluminum Buckets Used in Blood Bank Centrifuges”, Eng. Technol. Appl. Sci. Res., vol. 7, no. 4, pp. 1797–1801, Aug. 2017.


Abstract Views: 519
PDF Downloads: 244

Metrics Information
Bookmark and Share