Application of Minimum-time Optimal Control System in Buck-Boost Bi-linear Converters

  • S. M. M. Shariatmadar Department of Electrical Engineering, Firoozkooh Branch, Islamic Azad University, Firoozkooh, Iran
  • S. M. J. Jafarian Electrical Engineering Department, Shahed University, Tehran, Iran
Keywords: Buck-boost converter, sliding mode control, minimum-time control, bi-linear converter


In this study, the theory of minimum-time optimal control system in buck-boost bi-linear converters is described, so that output voltage regulation is carried out within minimum time. For this purpose, the Pontryagin's Minimum Principle is applied to find optimal switching level applying minimum-time optimal control rules. The results revealed that by utilizing an optimal switching level instead of classical switching patterns, output voltage regulation will be carried out within minimum time. However, transient energy index of increased overvoltage significantly reduces in order to attain minimum time optimal control in reduced output load. The laboratory results were used in order to verify numerical simulations.


Download data is not yet available.


H. P. Nabi, P. Dadashi, A. Shoulaie, “A novel structure for vector control of symmetrical six-phase induction machines with three current sensors”, Engineering, Technology & Applied Science Research,Vol. 1, No. 2, pp. 23-29, 2011

R. Jadeja, A. Ved, S. Chauhan, “An Investigation on the performance of random PWM controlled converters”, Engineering, Technology & Applied Science Research,Vol. 5, No. 6, pp. 876-884, 2015

P. Swarnkar, S. Jain, R. K. Nema, “Effect of adaptation gain in model reference adaptive controlled second order system”, Engineering, Technology & Applied Science Research,Vo.1, No. 3, pp. 70-75, 2011

S. Hiti, D. Borojevic, “Robust nonlinear control for the boost converter,” IEEE Transaction on Power Electronics, Vol. 10, No. 6, pp. 651-658, 1995

M. K. Kazimierczuk, A. Massarini, “Feedforward control dynamic of DC/DC PWM boost converter”, IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, Vol. 44, No.2, pp. 143-149, 1997

M. K. Kazimierczuk, L. A. Starman, “Dynamic performance of PWM DC/DC boost converter with input voltage feedforward control,” IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, Vol. 46, No. 12, pp. 1473-1481, 1999

V. Utkin, J. Guldner, J. X. Shi, Sliding Mode Control in Electromechanical Systems, Taylor and Francis, U.K., 1999

T. L. Skvarenina, The Power Electronics Handbook, CRC Press, Boca Raton, FL, 2002

L. Gavini, A. Izadian, L. Li, “A parallel compensation approach in controls of buck-boost converters”, IECON 37th Annual Conference on IEEE Industrial Electronics Society, Australia, November 7-10, 2011

S. C. Tan, Y. M. Lai, K. H. Cheung, C. K. Tse, “A unified approach to the design of PWM based sliding mode voltage controller for basic DC-DC converters in continuous conduction mode”, IEEE Trans. Circuit and Systems, Vol. 53, No. 8, pp. 1816-1827, 2006

Y. B. Shtessel, A. S. I. Zinober, I. A. Shkolnikov, “Sliding mode control of boost and buck-boost power converters using method of stable system centre”, Automatica, Vol. 39, No. 6, pp. 1061–1067, 2003

Z. Iwai, I. Mizumoto, L. Liu, S. L. Shah, H. Jiang, “Adaptive stable PID controllerwith parallel feedforward compensator”, 9th International Conference on Control Automation Robotics and Vision (2006 ICARCV), Singapore, 5-8 December, 2006

S. C. Tan, Y. M. Lai, M. K. H. Cheung, C. K. Tse, “Indirect sliding mode control of power converters via double integral sliding surface”, IEEE Trans. Power Electron., Vol. 23, No. 2, pp. 600-611, 2008

H. El Fadil, F. Giri, H. Ouadi, “Adaptive sliding mode control of PWM boost dc-dc converters”, 2006 IEEE Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control, Munich, Germany, October 4-6, 2006

V. M. Nguyen, C. Q. Lee, “Indirect implementations of sliding mode control law in buck-type converters”, IEEE Appl. Power Electron. Conf. Expo (APEC), Vol. 1, pp. 111–115, 1996

J. Mahdavi, A. Emadi, H. A. Toliyat, “Application of state space averaging method to sliding mode control of PWM DC/DC converters”, IEEE Conference on Industrial Electronics Society (IECON), pp. 157-162, 1999

M. J. Jafarian, J. Nazarzadeh,“Time-optimal sliding-mode control for multi-quadrant buck converters”, IET Power Electronics, Vol. 4, No. 1, pp. 143-146, 2011


Abstract Views: 343
PDF Downloads: 119

Metrics Information
Bookmark and Share