Design of a 2-DOF Control and Disturbance Estimator for a Magnetic Levitation System


  • A. Pati Department of Electrical Engineering, Motilal Nehru National Institute of Technology (MNNIT), India
  • V. C. Pal Department of Electrical Engineering, Motilal Nehru National Institute of Technology (MNNIT), India
  • R. Negi Department of Electrical Engineering, Motilal Nehru National Institute of Technology (MNNIT), India
Volume: 7 | Issue: 1 | Pages: 1369-1376 | February 2017 |


This work proposes a systematic two-degree freedom control scheme to improve the reference input tracking and load disturbance rejection for an unstable magnetic levitation system. The proposed control strategy is a two-step design process. Firstly, a proportional derivative controller is introduced purposely to get the desired set-point response of the magnetic levitation system and then, an integral square error (ISE) performance specification is used for designing a set-point tracking controller. Secondly, a disturbance estimator is designed using the desired closed loop complimentary sensitivity function for the rejection of load disturbances. This leads to the decoupling of the nominal set-point response from the load disturbance response similar to an open loop control manner. Thus, it is convenient to optimize both controllers simultaneously as well as separately. The effectiveness of the proposed control strategy is validated through simulation.


Maglev System, PID, Maclaurin Series, Disturbance Estimator


Download data is not yet available.


D. Rogg, “General survey of the possible applications and development tendencies of magnetic levitation technology”, IEEE Transactions on Magnetics, Vol. 20, No. 5, pp. 1696–1701, 1984 DOI:

H. Yaghoubi, “The Most Important Maglev Applications”, Journal of Engineering, Vol. 2013, Article ID 537986, 2013 DOI:

S. Yamamura, “Magnetic levitation technology of tracked vehicles present status and prospects”, IEEE Trans. on Magnetics, Vol. 12, No. 6, pp. 874–878, 1976 DOI:

P. Sinha, “Design of a magnetically levitated vehicle”, IEEE Trans. on Magnetics, Vol. 20, No. 5, pp. 1672–1674, 1984 DOI:

A. R. Eastham, W. F. Hayes, “Maglev systems development status”, IEEE Aerospace and Electronic Systems Magazine, Vol. 3, No.1, pp. 21–30, 1988 DOI:

H. W. Lee, K. C. Kim, J. Lee, “Review of Maglev Train Technologies”, IEEE Trans. on Magnetics, Vol. 42, No.7, pp. 1917-1925, 2006 DOI:

K. A. Mirica, S. T. Phillips, C. R. Mace, G. M. Whitesides, “Magnetic levitation in the analysis of foods and water”, Journal of Agricultural and Food Chemistry, Vol. 58, No. 11, pp. 6565–6569, 2010 DOI:

K. X. Qian, P. Zeng, W. M. Ru, H. Y. Yuan, “New concepts and new design of permanent maglev rotary artificial heart blood pumps”, Medical Engineering and Physics, Vol. 28, No. 4, pp. 383–388, 2006 DOI:

W. Barie, J. Chiasson, “Linear and Nonlinear State-space Controllers for Magnetic Levitation”, International Journal of Systems Science, Vol. 27, No.11, pp. 1153-1163, 1996 DOI:

M. Ahsan , N. Masood, F. Wali, “Control of a Magnetic Levitation System Using Non-Linear Robust Design Tool”, 3rd IEEE International Conference on Computer, Control & Communication (IC4), pp. 1-6, Karachi, Pakistan, September 25-26, 2013 DOI:

R. Song, Z. Chen, “Design of PID Controller for Maglev System Based on an Improved PSO with Mixed Inertia Weight”, Journal of Networks, Vol. 9, No. 6, pp. 1509-1517, 2014 DOI:

C. I. Muresan, C. Ionescu, S. Folea, R. D. Keyser, “Fractional order control of unstable processes: the magnetic levitation study case”, Nonlinear Dynamics, Vol. 80, No. 4, pp. 1761-1772, 2014 DOI:

A. Tepljakov, E. Petlenkov, J. Belikov, E. A. Gonzalez, “Design of Retuning Fractional PID Controllers for a Closed-loop Magnetic Levitation Control System”, 13rd International Conference on Control, Automation, Robotics & Vision (ICARCV 2014), pp. 1345-1350, Marina Bay Sands, Singapore, December 10-12, 2014 DOI:

A. Sakalli, T. Kumbasar, E. Yesil, H. Hagras, “Analysis of the Performance of Type-1, Self-tuning Type-1 and Interval Type-2 fuzzy PID Controller on the Magnetic Levitation System”, IEEE Internatinal Conference on Fuzzy System (FUZZ-IEEE), pp. 1859-1866, Beijing, China, July 6-11, 2014 DOI:

A. Ghosh, T. R. Krishnan, P. Tejaswy, A. Mandal, J. K. Pradhan, S. Ranasingh, “Design and implementation of a 2-DOF PID compensation for magnetic levitation systems”, ISA Transactions, Vol. 53, No. 4, pp. 1216–1222, 2014 DOI:

M. Golob, B. Tovornik, “Modeling and control of the magnetic suspension system”, ISA Transactions, Vol. 42, No. 1, pp. 89-100, 2003 DOI:

R. Uswarman, A. I. Cahyadi, O. Wahyunggoro, “Control of a Magnetic Levitation System Using Feedback Linearization”, IEEE International Conference on Computer, Control, Informatics and Its Applications (IC3INA), pp. 95-98, Jakarta, November 19-21, 2013 DOI:

A. E. Hajjaji, M. Ouladsine, “Modeling and Nonlinear Control of Magnetic Levitation Systems”, IEEE Transactions on Industrial Electronics, Vol. 48, No. 4, pp. 831-838, 2001 DOI:

D. Cho, Y. Kato, D. Spilman, “Sliding mode and classical controllers in magnetic levitation systems”, IEEE Control Systems, Vol. 13, No. 1, pp. 42-48, 1993 DOI:

N. F. AL-Muthairi, M. Zribi, “Sliding Mode Control of a Magnetic Levitation System”, Mathematical Problems in Engineering, Vol. 2004, No. 2, pp. 93–107, 2004 DOI:

H. K. Chiang, C. A. Chen, M. Y. Li, “Integral variable-structure grey control for magnetic levitation system”, Electric Power Applications, Vol. 153, No. 6, pp. 809-814, 2006 DOI:

C. A. Chen, H. K. Chiang, J. C. Shen, “Fuzzy Sliding Mode Control of Magnetic Ball Suspension System”, International Journal of Fuzzy System, Vol. 11, No. 2, pp. 97-106, 2009

F. J. Lin, S. Y. Chen, K. K. Shyu, “Robust Dynamic Sliding-Mode Control Using Adaptive RENN for Magnetic Levitation System”, IEEE Transactions on Neural Networks, Vol. 20, No. 6, pp. 938–951, 2009 DOI:

F. J. Lin, H. J. Shieh, L.T. Teng, P. H. Shieh, “Hybrid Controller With Recurrent Neural Network for Magnetic Levitation System”, IEEE Transactions on Magnetics, Vol. 41, No. 7, pp. 2260-2269, 2005 DOI:

H. K. Chiang, W. T. Tseng, C. C. Fang, C. A. Chen, “Integral backstepping sliding mode control of a magnetic ball suspension system”, 10th IEEE International Conference on Power Electronics and Drive Systems (PEDS), pp. 44– 49, Kitakyushu, April 22-25, 2013

W. Zhou, B. Liu, “Backstepping Based Adaptive Control of Magnetic Levitation System”, Proceedings of the 2nd International Conference On Systems Engineering and Modeling (ICSEM-13), pp. 435-438, Paris, France, 201

F. J. Lin, L. T. Teng, P. H. Shieh, “Intelligent Adaptive Backstepping Control System for Magnetic Levitation Apparatus”, IEEE Transactions on Magnetics, Vol. 43, No. 5, pp. 2009-2018, 2007 DOI:

Z. J. Yang, K. Kunitoshi, S. Kanae, K. Wada, “Adaptive Robust Output-Feedback Control of a Magnetic Levitation System by K-Filter Approach”, IEEE Transactions on Industrial Electronics, Vol. 55, No. 1, pp. 390–399, 2008 DOI:

J. C. Shen, “H∞ Control and Sliding Mode Control of Magnetic levitation System”, Asian Journal of Control, Vol. 4, No. 3, pp. 333-340, 2002 DOI:

T. Saravanan, G. Saritha, R. Udayakumar, “Robust H- Infinity Two Degree of Freedom Control for Electro Magnetic Suspension System”, Middle-East Journal of Scientific Research, Vol. 18, No.12, pp. 1827-1831, 2013

C. M. Lin, Chih-Min Lin, C. W. Chen, “SoPC-based adaptive PID control system design for magnetic levitation system”, IEEE Systems Journal, Vol. 5, No. 2, pp. 278-287, 2011 DOI:

C. E. Garcia, M. Morari, “Internal model control: A unifying review and some new results”, Industrial & Engineering Chemistry Process Design and Development, Vol. 21, No. 2, pp. 308-323, 1982 DOI:

D. S. Liu, J. Li, W. S. Chang, “Internal Model Control for Magnetic Suspension System”, Proceedings of the International Conference on Machine Learning and Cybernetics, pp. 482-487, Guangzhou,China, August 18-21, 2005

A. Detchrat, V. Tipsuwanporn, A. Numsomran, S. Suvikath, “IMC-Based PID Controllers Designs for Two-mass systems”, Proceeding of Multi-Conference of Engineers and Computer Scientists (IMECS), pp.1-4, Hong Kong, March 14-16, 2012

Z. Zhongqiao, W. Xiaojing, Z. Yanhong, X. Liang, C. Yanglin, “The Research on IMC-PID Control in Maglev Supporting System”, The Open Automation and Control Systems Journal, Vol. 6, No. 1, pp. 797-802, 2014 DOI:

M. Morari, E. Zafiriou, Robust Process Control, Englewood Cliffs, NJ, Prentice Hall, 1989

H. P. Huang, C. C. Chen, “Control System synthesis for open-loop unstable process with time delay”, IEE Proc. Part D, Vol. 144, No. 4, pp. 334-346, 1997 DOI:

Y. Lee, J. Lee, S. Park, “PID controller tuning for integrating and unstable processes with time delay”, Chemical Engineering Science, Vol. 55, No. 17, pp. 3481-3493, 2000 DOI:

X. P. Yang, Q. G. Wang, C. C. Hang, C. Lin, “IMC-based control system design for unstable processes”, Ind. Chem. Res., Vol. 41, No. 17, pp. 4288-4294, 2002 DOI:

W. Tan, H. J. Marquez, T. Chen, “IMC design for unstable processes with time delay”, J. Process Control, Vol. 13, No. 1, pp. 203-213, 2003 DOI:

H. J. Kwak, S. W. Sung, I. B. Lee, J. Y. Park, “Modified Smith predictor with a new structure for unstable processes”, Ind. Eng. Chem. Res., Vol. 38, No. 2, pp. 405-411, 1999 DOI:

S. Majhi, D. P. Atherton, “Obtaining controller Parameters for a new Smith predictor using autotuning”, Automatica, Vol. 36, No.1, pp. 1651-1658, 2000 DOI:

W. D. Zhang, D. Gu, W. Wang, X. Xu, “Quantitative performance design of a modified Smith Predictor for unstable processes with time delay”, Ind. Eng. Chem. Res., Vol. 43, No. 1, pp. 56-62, 2004 DOI:

T. Liu, W. Zhang, D. Gu, “Analytical design of two-degree-of-freedom control scheme for open-loop unstable processes with time delay”, Journal of Process Control, Vol. 15 No. 5, pp. 559-572, 2005 DOI:

Feedback Expermental Manual, Magnetic Levitation Control Experiments, Feedback Instruments Limited, UK, 2011


How to Cite

A. Pati, V. C. Pal, and R. Negi, “Design of a 2-DOF Control and Disturbance Estimator for a Magnetic Levitation System”, Eng. Technol. Appl. Sci. Res., vol. 7, no. 1, pp. 1369–1376, Feb. 2017.


Abstract Views: 629
PDF Downloads: 273

Metrics Information
Bookmark and Share