Design of a 2-DOF Control and Disturbance Estimator for a Magnetic Levitation System

A. Pati, V. C. Pal, R. Negi

Abstract


This work proposes a systematic two-degree freedom control scheme to improve the reference input tracking and load disturbance rejection for an unstable magnetic levitation system. The proposed control strategy is a two-step design process. Firstly, a proportional derivative controller is introduced purposely to get the desired set-point response of the magnetic levitation system and then, an integral square error (ISE) performance specification is used for designing a set-point tracking controller. Secondly, a disturbance estimator is designed using the desired closed loop complimentary sensitivity function for the rejection of load disturbances. This leads to the decoupling of the nominal set-point response from the load disturbance response similar to an open loop control manner. Thus, it is convenient to optimize both controllers simultaneously as well as separately. The effectiveness of the proposed control strategy is validated through simulation.


Keywords


Maglev System; PID; Maclaurin Series; Disturbance Estimator

Full Text:

PDF

References


D. Rogg, “General survey of the possible applications and development tendencies of magnetic levitation technology”, IEEE Transactions on Magnetics, Vol. 20, No. 5, pp. 1696–1701, 1984

H. Yaghoubi, “The Most Important Maglev Applications”, Journal of Engineering, Vol. 2013, Article ID 537986, 2013

S. Yamamura, “Magnetic levitation technology of tracked vehicles present status and prospects”, IEEE Trans. on Magnetics, Vol. 12, No. 6, pp. 874–878, 1976

P. Sinha, “Design of a magnetically levitated vehicle”, IEEE Trans. on Magnetics, Vol. 20, No. 5, pp. 1672–1674, 1984

A. R. Eastham, W. F. Hayes, “Maglev systems development status”, IEEE Aerospace and Electronic Systems Magazine, Vol. 3, No.1, pp. 21–30, 1988

H. W. Lee, K. C. Kim, J. Lee, “Review of Maglev Train Technologies”, IEEE Trans. on Magnetics, Vol. 42, No.7, pp. 1917-1925, 2006

K. A. Mirica, S. T. Phillips, C. R. Mace, G. M. Whitesides, “Magnetic levitation in the analysis of foods and water”, Journal of Agricultural and Food Chemistry, Vol. 58, No. 11, pp. 6565–6569, 2010

K. X. Qian, P. Zeng, W. M. Ru, H. Y. Yuan, “New concepts and new design of permanent maglev rotary artificial heart blood pumps”, Medical Engineering and Physics, Vol. 28, No. 4, pp. 383–388, 2006

W. Barie, J. Chiasson, “Linear and Nonlinear State-space Controllers for Magnetic Levitation”, International Journal of Systems Science, Vol. 27, No.11, pp. 1153-1163, 1996

M. Ahsan , N. Masood, F. Wali, “Control of a Magnetic Levitation System Using Non-Linear Robust Design Tool”, 3rd IEEE International Conference on Computer, Control & Communication (IC4), pp. 1-6, Karachi, Pakistan, September 25-26, 2013

R. Song, Z. Chen, “Design of PID Controller for Maglev System Based on an Improved PSO with Mixed Inertia Weight”, Journal of Networks, Vol. 9, No. 6, pp. 1509-1517, 2014

C. I. Muresan, C. Ionescu, S. Folea, R. D. Keyser, “Fractional order control of unstable processes: the magnetic levitation study case”, Nonlinear Dynamics, Vol. 80, No. 4, pp. 1761-1772, 2014

A. Tepljakov, E. Petlenkov, J. Belikov, E. A. Gonzalez, “Design of Retuning Fractional PID Controllers for a Closed-loop Magnetic Levitation Control System”, 13rd International Conference on Control, Automation, Robotics & Vision (ICARCV 2014), pp. 1345-1350, Marina Bay Sands, Singapore, December 10-12, 2014

A. Sakalli, T. Kumbasar, E. Yesil, H. Hagras, “Analysis of the Performance of Type-1, Self-tuning Type-1 and Interval Type-2 fuzzy PID Controller on the Magnetic Levitation System”, IEEE Internatinal Conference on Fuzzy System (FUZZ-IEEE), pp. 1859-1866, Beijing, China, July 6-11, 2014

A. Ghosh, T. R. Krishnan, P. Tejaswy, A. Mandal, J. K. Pradhan, S. Ranasingh, “Design and implementation of a 2-DOF PID compensation for magnetic levitation systems”, ISA Transactions, Vol. 53, No. 4, pp. 1216–1222, 2014

M. Golob, B. Tovornik, “Modeling and control of the magnetic suspension system”, ISA Transactions, Vol. 42, No. 1, pp. 89-100, 2003

R. Uswarman, A. I. Cahyadi, O. Wahyunggoro, “Control of a Magnetic Levitation System Using Feedback Linearization”, IEEE International Conference on Computer, Control, Informatics and Its Applications (IC3INA), pp. 95-98, Jakarta, November 19-21, 2013

A. E. Hajjaji, M. Ouladsine, “Modeling and Nonlinear Control of Magnetic Levitation Systems”, IEEE Transactions on Industrial Electronics, Vol. 48, No. 4, pp. 831-838, 2001

D. Cho, Y. Kato, D. Spilman, “Sliding mode and classical controllers in magnetic levitation systems”, IEEE Control Systems, Vol. 13, No. 1, pp. 42-48, 1993

N. F. AL-Muthairi, M. Zribi, “Sliding Mode Control of a Magnetic Levitation System”, Mathematical Problems in Engineering, Vol. 2004, No. 2, pp. 93–107, 2004

H. K. Chiang, C. A. Chen, M. Y. Li, “Integral variable-structure grey control for magnetic levitation system”, Electric Power Applications, Vol. 153, No. 6, pp. 809-814, 2006

C. A. Chen, H. K. Chiang, J. C. Shen, “Fuzzy Sliding Mode Control of Magnetic Ball Suspension System”, International Journal of Fuzzy System, Vol. 11, No. 2, pp. 97-106, 2009

F. J. Lin, S. Y. Chen, K. K. Shyu, “Robust Dynamic Sliding-Mode Control Using Adaptive RENN for Magnetic Levitation System”, IEEE Transactions on Neural Networks, Vol. 20, No. 6, pp. 938–951, 2009

F. J. Lin, H. J. Shieh, L.T. Teng, P. H. Shieh, “Hybrid Controller With Recurrent Neural Network for Magnetic Levitation System”, IEEE Transactions on Magnetics, Vol. 41, No. 7, pp. 2260-2269, 2005

H. K. Chiang, W. T. Tseng, C. C. Fang, C. A. Chen, “Integral backstepping sliding mode control of a magnetic ball suspension system”, 10th IEEE International Conference on Power Electronics and Drive Systems (PEDS), pp. 44– 49, Kitakyushu, April 22-25, 2013

W. Zhou, B. Liu, “Backstepping Based Adaptive Control of Magnetic Levitation System”, Proceedings of the 2nd International Conference On Systems Engineering and Modeling (ICSEM-13), pp. 435-438, Paris, France, 201

F. J. Lin, L. T. Teng, P. H. Shieh, “Intelligent Adaptive Backstepping Control System for Magnetic Levitation Apparatus”, IEEE Transactions on Magnetics, Vol. 43, No. 5, pp. 2009-2018, 2007

Z. J. Yang, K. Kunitoshi, S. Kanae, K. Wada, “Adaptive Robust Output-Feedback Control of a Magnetic Levitation System by K-Filter Approach”, IEEE Transactions on Industrial Electronics, Vol. 55, No. 1, pp. 390–399, 2008

J. C. Shen, “H∞ Control and Sliding Mode Control of Magnetic levitation System”, Asian Journal of Control, Vol. 4, No. 3, pp. 333-340, 2002

T. Saravanan, G. Saritha, R. Udayakumar, “Robust H- Infinity Two Degree of Freedom Control for Electro Magnetic Suspension System”, Middle-East Journal of Scientific Research, Vol. 18, No.12, pp. 1827-1831, 2013

C. M. Lin, Chih-Min Lin, C. W. Chen, “SoPC-based adaptive PID control system design for magnetic levitation system”, IEEE Systems Journal, Vol. 5, No. 2, pp. 278-287, 2011

C. E. Garcia, M. Morari, “Internal model control: A unifying review and some new results”, Industrial & Engineering Chemistry Process Design and Development, Vol. 21, No. 2, pp. 308-323, 1982

D. S. Liu, J. Li, W. S. Chang, “Internal Model Control for Magnetic Suspension System”, Proceedings of the International Conference on Machine Learning and Cybernetics, pp. 482-487, Guangzhou,China, August 18-21, 2005

A. Detchrat, V. Tipsuwanporn, A. Numsomran, S. Suvikath, “IMC-Based PID Controllers Designs for Two-mass systems”, Proceeding of Multi-Conference of Engineers and Computer Scientists (IMECS), pp.1-4, Hong Kong, March 14-16, 2012

Z. Zhongqiao, W. Xiaojing, Z. Yanhong, X. Liang, C. Yanglin, “The Research on IMC-PID Control in Maglev Supporting System”, The Open Automation and Control Systems Journal, Vol. 6, No. 1, pp. 797-802, 2014

M. Morari, E. Zafiriou, Robust Process Control, Englewood Cliffs, NJ, Prentice Hall, 1989

H. P. Huang, C. C. Chen, “Control System synthesis for open-loop unstable process with time delay”, IEE Proc. Part D, Vol. 144, No. 4, pp. 334-346, 1997

Y. Lee, J. Lee, S. Park, “PID controller tuning for integrating and unstable processes with time delay”, Chemical Engineering Science, Vol. 55, No. 17, pp. 3481-3493, 2000

X. P. Yang, Q. G. Wang, C. C. Hang, C. Lin, “IMC-based control system design for unstable processes”, Ind. Chem. Res., Vol. 41, No. 17, pp. 4288-4294, 2002

W. Tan, H. J. Marquez, T. Chen, “IMC design for unstable processes with time delay”, J. Process Control, Vol. 13, No. 1, pp. 203-213, 2003

H. J. Kwak, S. W. Sung, I. B. Lee, J. Y. Park, “Modified Smith predictor with a new structure for unstable processes”, Ind. Eng. Chem. Res., Vol. 38, No. 2, pp. 405-411, 1999

S. Majhi, D. P. Atherton, “Obtaining controller Parameters for a new Smith predictor using autotuning”, Automatica, Vol. 36, No.1, pp. 1651-1658, 2000

W. D. Zhang, D. Gu, W. Wang, X. Xu, “Quantitative performance design of a modified Smith Predictor for unstable processes with time delay”, Ind. Eng. Chem. Res., Vol. 43, No. 1, pp. 56-62, 2004

T. Liu, W. Zhang, D. Gu, “Analytical design of two-degree-of-freedom control scheme for open-loop unstable processes with time delay”, Journal of Process Control, Vol. 15 No. 5, pp. 559-572, 2005

Feedback Expermental Manual, Magnetic Levitation Control Experiments, Feedback Instruments Limited, UK, 2011




eISSN: 1792-8036     pISSN: 2241-4487