Electrical Behavior of Lanthanum Aluminate (LAO) and Gadolinium Doped Ceria (GDG) Composite Electrolyte for Electrochemical Devices

Authors

  • Mohd Najim Department of Electrical and Electronic Engineering, College of Engineering, University of Jeddah, Saudi Arabia
Volume: 13 | Issue: 2 | Pages: 10232-10238 | April 2023 | https://doi.org/10.48084/etasr.5472

Abstract

The LAO-GDC solid composite electrolyte has been proposed for use in Solid Oxide Fuel Cells (SOFC). The material conductivity of Solid Carbonate-Ceria (SCC) composite electrolytes is 0.04Scm-1 between 400 and 700°C. For this purpose, mixtures of LaAlO3 (LAO) and gadolinium doped ceria Ce0.8Gd0.2O2 (GDC) were created in weight ratios of 3:1, 2:2, and 1:3. The composite electrolyte material was studied separately to improve conductivity. The phase structure and microstructure were studied using an X-Ray Diffractometer (XRD) and Scanning Electron Microscopy (SEM), and the electrical behavior was investigated using Impedance Spectroscopy (IS). The SEM and Energy Dispersive X-ray spectroscopy (EDX) demonstrated a compact structure with an acceptable atomic percentage of constituent elements and a uniform grain distribution. Experimental investigation showed that this composite electrolyte had a high density of LaAlO3 (LAO)-Ce0.8Gd0.2O2 (GDC) composites and an approximate 97% density of its theoretical. The electrical behavior of LAO-GDC composites had the highest value of 0.1Scm-1 at 700°C, which is more extreme than the individual conductivities of LAO and GDC, according to Electrochemical Impedance Spectroscopy (EIS) techniques. Among the three composite ratios of the system, only the weight ratio of 3:1 had better conductivity. The LaAlO3 (LAO)-Ce0.8Gd0.2O2 (GDC) composite material has a higher activation energy of 1.5eV.

Keywords:

X-Ray Diffractometer (XRD), lanthanum aluminate (LAO), solid electrolyte, Electrical Conductivity, solid oxide fuel cells (SOFCs)

Downloads

Download data is not yet available.

References

S. A. Saadabadi, A. Thallam Thattai, L. Fan, R. E. F. Lindeboom, H. Spanjers, and P. V. Aravind, "Solid Oxide Fuel Cells fuelled with biogas: Potential and constraints," Renewable Energy, vol. 134, pp. 194–214, Apr. 2019. DOI: https://doi.org/10.1016/j.renene.2018.11.028

B. Singh, S. Ghosh, S. Aich, and B. Roy, "Low temperature solid oxide electrolytes (LT-SOE): A review," Journal of Power Sources, vol. 339, pp. 103–135, Jan. 2017. DOI: https://doi.org/10.1016/j.jpowsour.2016.11.019

J. Patakangas, Y. Ma, Y. Jing, and P. Lund, "Review and analysis of characterization methods and ionic conductivities for low-temperature solid oxide fuel cells (LT-SOFC)," Journal of Power Sources, vol. 263, pp. 315–331, Oct. 2014. DOI: https://doi.org/10.1016/j.jpowsour.2014.04.008

Y. J. Jin, Z. G. Liu, Z. Y. Ding, G. Cao, and J. H. Ouyang, "Preparation, microstructure and electrical property of GdSmZr2O7-(Li0.52Na0.48)2CO3 composite electrolyte via carbonate infiltration," Ceramics International, vol. 46, no. 5, pp. 5689–5694, Apr. 2020. DOI: https://doi.org/10.1016/j.ceramint.2019.11.016

Raghvendra, R. K. Singh, and P. Singh, "Electrical conductivity of LSGM–YSZ composite materials synthesized via coprecipitation route," Journal of Materials Science, vol. 49, no. 16, pp. 5571–5578, Aug. 2014. DOI: https://doi.org/10.1007/s10853-014-8265-5

Z. Wang, Y. Zeng, C. Li, Z. Ye, L. Cao, and Y. Zhang, "Structures and electrical conductivities of Gd3+ and Fe3+ co-doped cerium oxide electrolytes sintered at low temperature for ILT-SOFCs," Ceramics International, vol. 44, no. 9, pp. 10328–10334, Jun. 2018. DOI: https://doi.org/10.1016/j.ceramint.2018.03.041

L. Carrette, K. A. Friedrich, and U. Stimming, "Fuel cells - fundamentals and applications," Fuel Cells, vol. 1, May 2001. DOI: https://doi.org/10.1002/1615-6854(200105)1:1<5::AID-FUCE5>3.0.CO;2-G

İ. Ermiş and S. P. S. Shaikh, "Study of crystallographic, thermal and electrical properties of (Bi2O3)1-x-y(Tb4O7)x(Gd2O3)y electrolyte for SOFC application," Ceramics International, vol. 44, no. 15, pp. 18776–18782, Oct. 2018. DOI: https://doi.org/10.1016/j.ceramint.2018.07.109

S. P. S. Badwal and K. Foger, "Solid oxide electrolyte fuel cell review," Ceramics International, vol. 22, no. 3, pp. 257–265, Jan. 1996. DOI: https://doi.org/10.1016/0272-8842(95)00101-8

J. B. Goodenough, A. Manthiram, M. Paranthaman, and Y. S. Zhen, "Oxide ion electrolytes," Materials Science and Engineering: B, vol. 12, no. 4, pp. 357–364, Feb. 1992. DOI: https://doi.org/10.1016/0921-5107(92)90006-U

S. (Rob) Hui et al., "A brief review of the ionic conductivity enhancement for selected oxide electrolytes," Journal of Power Sources, vol. 172, no. 2, pp. 493–502, Oct. 2007. DOI: https://doi.org/10.1016/j.jpowsour.2007.07.071

A. B. Stambouli and E. Traversa, "Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy," Renewable and Sustainable Energy Reviews, vol. 6, no. 5, pp. 433–455, Oct. 2002. DOI: https://doi.org/10.1016/S1364-0321(02)00014-X

N. K. Singh, P. Singh, M. K. Singh, D. Kumar, and O. Parkash, "Auto-combustion synthesis and properties of Ce0.85Gd0.15O1.925 for intermediate temperature solid oxide fuel cells electrolyte," Solid State Ionics, vol. 192, no. 1, pp. 431–434, Jun. 2011. DOI: https://doi.org/10.1016/j.ssi.2010.04.015

T. Kudo and H. Obayashi, "Oxygen Ion Conduction of the Fluorite‐Type Ce1 − x Ln x O 2 − x / 2 ( Ln = Lanthanoid Element )," Journal of The Electrochemical Society, vol. 122, no. 1, Jan. 1975, Art. no. 142. DOI: https://doi.org/10.1149/1.2134143

N. Jaiswal, N. K. Singh, D. Kumar, and O. Parkash, "Effect of strontium (Sr) doping on the conductivity of ceria," Journal of Power Sources, vol. 202, pp. 78–84, Mar. 2012. DOI: https://doi.org/10.1016/j.jpowsour.2011.10.140

X. Li, Z. Feng, J. Lu, F. Wang, M. Xue, and G. Shao, "Synthesis and electrical properties of Ce1−xGdxO2−x/2 (x=0.05–0.3) solid solutions prepared by a citrate–nitrate combustion method," Ceramics International, vol. 38, no. 4, pp. 3203–3207, May 2012. DOI: https://doi.org/10.1016/j.ceramint.2011.12.025

R. V. Mangalaraja et al., "Electrical and thermal characterization of Sm3+ doped ceria electrolytes synthesized by combustion technique," Journal of Alloys and Compounds, vol. 510, no. 1, pp. 134–140, Jan. 2012. DOI: https://doi.org/10.1016/j.jallcom.2011.09.016

O. N. Verma, S. Singh, V. K. Singh, M. Najim, R. Pandey, and P. Singh, "Influence of Ba Doping on the Electrical Behaviour of La0.9Sr0.1Al0.9Mg0.1O3−δ System for a Solid Electrolyte," Journal of Electronic Materials, vol. 50, no. 3, pp. 1010–1021, Mar. 2021. DOI: https://doi.org/10.1007/s11664-020-08653-2

O. N. Verma, N. K. Singh, Raghvendra, and P. Singh, "Study of ion dynamics in lanthanum aluminate probed by conductivity spectroscopy," RSC Advances, vol. 5, no. 28, pp. 21614–21619, Feb. 2015. DOI: https://doi.org/10.1039/C5RA01146A

L. John Berchmans, S. Angappan, A. Visuvasam, and K. B. Ranjith Kumar, "Preparation and characterization of LaAlO3," Materials Chemistry and Physics, vol. 109, no. 1, pp. 113–118, May 2008. DOI: https://doi.org/10.1016/j.matchemphys.2007.11.007

T. L. Nguyen, M. Dokiya, S. Wang, H. Tagawa, and T. Hashimoto, "The effect of oxygen vacancy on the oxide ion mobility in LaAlO3-based oxides," Solid State Ionics, vol. 130, no. 3, pp. 229–241, May 2000. DOI: https://doi.org/10.1016/S0167-2738(00)00640-8

O. N. Verma, P. K. Jha, and P. Singh, "A structural–electrical property correlation in A-site double substituted lanthanum aluminate," Journal of Applied Physics, vol. 122, no. 22, Dec. 2017, Art. no. 225106. DOI: https://doi.org/10.1063/1.4999002

W. S. Jang, S. H. Hyun, and S. G. Kim, "Preparation of YSZ/YDC and YSZ/GDC composite electrolytes by the tape casting and sol-gel dip-drawing coating method for low-temperature SOFC," Journal of Materials Science, vol. 37, no. 12, pp. 2535–2541, Jun. 2002.

J. H. Kim, Y. Kim, P. A. Connor, J. T. S. Irvine, J. Bae, and W. Zhou, "Structural, thermal and electrochemical properties of layered perovskite SmBaCo2O5+d, a potential cathode material for intermediate-temperature solid oxide fuel cells," Journal of Power Sources, vol. 194, no. 2, pp. 704–711, Dec. 2009. DOI: https://doi.org/10.1016/j.jpowsour.2009.06.024

J. Huang, Z. Mao, L. Yang, and R. Peng, "SDC-Carbonate Composite Electrolytes for Low-Temperature SOFCs," Electrochemical and Solid-State Letters, vol. 8, no. 9, Jul. 2005, Art. no. A437. DOI: https://doi.org/10.1149/1.1960139

T. Fukui, S. Ohara, Kenji. Murata, H. Yoshida, K. Miura, and T. Inagaki, "Performance of intermediate temperature solid oxide fuel cells with La(Sr)Ga(Mg)O3 electrolyte film," Journal of Power Sources, vol. 106, no. 1, pp. 142–145, Apr. 2002. DOI: https://doi.org/10.1016/S0378-7753(01)01026-6

W. Sun, M. Liu, and W. Liu, "Chemically Stable Yttrium and Tin Co-Doped Barium Zirconate Electrolyte for Next Generation High Performance Proton-Conducting Solid Oxide Fuel Cells," Advanced Energy Materials, vol. 3, no. 8, pp. 1041–1050, 2013. DOI: https://doi.org/10.1002/aenm.201201062

A. J. Abd Aziz, N. A. Baharuddin, M. R. Somalu, and A. Muchtar, "Review of composite cathodes for intermediate-temperature solid oxide fuel cell applications," Ceramics International, vol. 46, no. 15, pp. 23314–23325, Oct. 2020. DOI: https://doi.org/10.1016/j.ceramint.2020.06.176

L. Fan*, "Solid-State Electrolytes for SOFC," in Solid Oxide Fuel Cells, John Wiley & Sons, Ltd, 2020, pp. 35–78. DOI: https://doi.org/10.1002/9783527812790.ch2

C. Salvo, R. V. Mangalaraja, R. Udayabashkar, M. Lopez, and C. Aguilar, "Enhanced mechanical and electrical properties of novel graphene reinforced copper matrix composites," Journal of Alloys and Compounds, vol. 777, pp. 309–316, Mar. 2019. DOI: https://doi.org/10.1016/j.jallcom.2018.10.357

S. Dwivedi, "Solid oxide fuel cell: Materials for anode, cathode and electrolyte," International Journal of Hydrogen Energy, vol. 45, no. 44, pp. 23988–24013, Sep. 2020. DOI: https://doi.org/10.1016/j.ijhydene.2019.11.234

Y. Mishima, H. Mitsuyasu, M. Ohtaki, and K. Eguchi, "Solid Oxide Fuel Cell with Composite Electrolyte Consisting of Samaria‐Doped Ceria and Yttria‐Stabilized Zirconia," Journal of The Electrochemical Society, vol. 145, no. 3, Mar. 1998, Art. no. 1004. DOI: https://doi.org/10.1149/1.1838378

L. Zhang, X. Li, S. Wang, K. G. Romito, and K. Huang, "High conductivity mixed oxide-ion and carbonate-ion conductors supported by a prefabricated porous solid-oxide matrix," Electrochemistry Communications, vol. 13, no. 6, pp. 554–557, Jun. 2011. DOI: https://doi.org/10.1016/j.elecom.2011.03.008

N. Mahato, A. Gupta, and K. Balani, "Doped zirconia and ceria-based electrolytes for solid oxide fuel cells: a review," Nanomaterials and Energy, vol. 1, no. 1, pp. 27–45, Jan. 2012. DOI: https://doi.org/10.1680/nme.11.00004

C. Papadakis, Y. Yin, M. Danikas, and C. Charalambous, "Surface Discharges and Flashover Voltages in Nanocomposite XLPE Samples," Engineering, Technology & Applied Science Research, vol. 8, no. 6, pp. 3502–3504, Dec. 2018. DOI: https://doi.org/10.48084/etasr.2186

P. Löfkvist, "Fabrication of a light-weight SOFC using ceramic fibre paper as substrate," MSc Thesis, Lund University, Lund, Sweden, 2015.

D. Xu et al., "Fabrication and characterization of SDC–LSGM composite electrolytes material in IT-SOFCs," Journal of Alloys and Compounds, vol. 429, no. 1, pp. 292–295, Feb. 2007. DOI: https://doi.org/10.1016/j.jallcom.2006.04.009

B. Li, S. Liu, X. Liu, G. Hao, H. Wang, and W. Su, "Study on GDC-LSGM composite electrolytes for intermediate-temperature solid oxide fuel cells," International Journal of Hydrogen Energy, vol. 38, no. 26, pp. 11392–11397, Aug. 2013. DOI: https://doi.org/10.1016/j.ijhydene.2013.06.116

A. Tschöpe, E. Sommer, and R. Birringer, "Grain size-dependent electrical conductivity of polycrystalline cerium oxide: I. Experiments," Solid State Ionics, vol. 139, no. 3, pp. 255–265, Feb. 2001. DOI: https://doi.org/10.1016/S0167-2738(01)00678-6

A. Tschöpe, "Grain size-dependent electrical conductivity of polycrystalline cerium oxide II: Space charge model," Solid State Ionics, vol. 139, no. 3, pp. 267–280, Feb. 2001. DOI: https://doi.org/10.1016/S0167-2738(01)00677-4

S. U. Sharath, R. K. Singh, Raghvendra, B. P. Singh, P. Kumar, and P. Singh, "Influence of Grain and Grain-Boundary Resistances on Dielectric Properties of KNbO3 Under Small DC Bias Field," Journal of the American Ceramic Society, vol. 96, no. 10, pp. 3127–3132, 2013. DOI: https://doi.org/10.1111/jace.12466

A. P. Sakhya, A. Dutta, and T. P. Sinha, "Dielectric relaxation of samarium aluminate," Applied Physics A, vol. 114, no. 4, pp. 1097–1104, Mar. 2014. DOI: https://doi.org/10.1007/s00339-013-7766-4

T. Lan Nguyen and M. Dokiya, "Electrical conductivity, thermal expansion and reaction of (La, Sr)(Ga, Mg)O3 and (La, Sr)AlO3 system," Solid State Ionics, vol. 132, no. 3, pp. 217–226, Jul. 2000. DOI: https://doi.org/10.1016/S0167-2738(00)00661-5

K. Hoang, M. Oh, and Y. Choi, "Electronic Structure and Properties of Lithium-Rich Complex Oxides," ACS Applied Electronic Materials, vol. 1, no. 1, pp. 75–81, Jan. 2019. DOI: https://doi.org/10.1021/acsaelm.8b00025

D. Lybye, F. W. Poulsen, and M. Mogensen, "Conductivity of A- and B-site doped LaAlO3, LaGaO3, LaScO3 and LaInO3 perovskites," Solid State Ionics, vol. 128, no. 1, pp. 91–103, Feb. 2000. DOI: https://doi.org/10.1016/S0167-2738(99)00337-9

J. Y. Park and G. M. Choi, "Electrical conductivity of Sr and Mg doped LaAlO3," Solid State Ionics, vol. 154–155, pp. 535–540, Dec. 2002. DOI: https://doi.org/10.1016/S0167-2738(02)00510-6

D. Aroussi, B. Aour, and A. S. Bouaziz, "A Comparative Study of 316L Stainless Steel and a Titanium Alloy in an Aggressive Biological Medium," Engineering, Technology & Applied Science Research, vol. 9, no. 6, pp. 5093–5098, Dec. 2019. DOI: https://doi.org/10.48084/etasr.3208

M. V. Japitana and M. E. C. Burce, "A Satellite-based Remote Sensing Technique for Surface Water Quality Estimation," Engineering, Technology & Applied Science Research, vol. 9, no. 2, pp. 3965–3970, Apr. 2019. DOI: https://doi.org/10.48084/etasr.2664

H. Hayashi, H. Inaba, M. Matsuyama, N. G. Lan, M. Dokiya, and H. Tagawa, "Structural consideration on the ionic conductivity of perovskite-type oxides," Solid State Ionics, vol. 122, no. 1, pp. 1–15, Jul. 1999. DOI: https://doi.org/10.1016/S0167-2738(99)00066-1

M. A. Biberci and M. B. Celik, "Dynamic Modeling and Simulation of a PEM Fuel Cell (PEMFC) during an Automotive Vehicle’s Driving Cycle," Engineering, Technology & Applied Science Research, vol. 10, no. 3, pp. 5796–5802, Jun. 2020. DOI: https://doi.org/10.48084/etasr.3352

K. Hoang, "First-principles theory of doping in layered oxide electrode materials," Physical Review Materials, vol. 1, no. 7, Dec. 2017, Art. no. 075403. DOI: https://doi.org/10.1103/PhysRevMaterials.1.075403

H. J. Park and G. M. Choi, "Oxygen permeation in Sr- and Mg-doped LaAlO3 and Gd-doped CeO2 at high temperature," Solid State Ionics, vol. 175, no. 1, pp. 399–403, Nov. 2004. DOI: https://doi.org/10.1016/j.ssi.2004.03.048

Downloads

How to Cite

[1]
Najim, M. 2023. Electrical Behavior of Lanthanum Aluminate (LAO) and Gadolinium Doped Ceria (GDG) Composite Electrolyte for Electrochemical Devices. Engineering, Technology & Applied Science Research. 13, 2 (Apr. 2023), 10232–10238. DOI:https://doi.org/10.48084/etasr.5472.

Metrics

Abstract Views: 597
PDF Downloads: 476

Metrics Information

Most read articles by the same author(s)