Monitoring and Analysis of Agricultural Field Parameters in Order to Increase Crop Yield through a Colored Object Tracking Robot, Image Processing, and IOT

Authors

  • S. M. Usha Electronics and Communication Engineering, JSS Academy of Technical Education, India
  • H. B. Mahesh Computer Science Engineering, PES University, India
Volume: 12 | Issue: 4 | Pages: 8791-8795 | August 2022 | https://doi.org/10.48084/etasr.5028

Abstract

Adequately watering plants is a challenging task. Over- and under-watering may harm plants and seeds, as excess or restraint watering reduces crop production and yield. This study presents a method to remotely monitor and efficiently water agricultural fields to increase crop production by utilizing advanced technologies such as internet things, robotics, image processing, and neural networks. Accurate smoothing and image segmentation techniques were employed to study the plants' conditions. Color median, Gaussian, and hybrid median filters were employed to preprocess the data before segmentation and classification. The hybrid median filter and multilevel luminance grading system were employed to increase the quality of the image. The k-means clustering approach was used for image segmentation. The signal-to-noise ratios of the original and recreated images were compared and analyzed.

Keywords:

image clustering, hybrid median image smoothing, IoT, robotics, agricultural applications

Downloads

Download data is not yet available.

References

S. Murawwat, A. Qureshi, S. Ahmad, and Y. Shahid, "Weed Detection Using SVMs," Engineering, Technology & Applied Science Research, vol. 8, no. 1, pp. 2412–2416, Feb. 2018. DOI: https://doi.org/10.48084/etasr.1647

S. A. B. Anas, R. S. S. Singh, and N. A. B. Kamarudin, "Designing an IoT Agriculture Monitoring System for Improving Farmer’s Acceptance of Using IoT Technology," Engineering, Technology & Applied Science Research, vol. 12, no. 1, pp. 8157–8163, Feb. 2022. DOI: https://doi.org/10.48084/etasr.4667

A. H. Blasi, M. A. Abbadi, and R. Al-Huweimel, "Machine Learning Approach for an Automatic Irrigation System in Southern Jordan Valley," Engineering, Technology & Applied Science Research, vol. 11, no. 1, pp. 6609–6613, Feb. 2021. DOI: https://doi.org/10.48084/etasr.3944

K. Khaskhoussy, B. Kahlaoui, B. M. Nefzi, O. Jozdan, A. Dakheel, and M. Hachicha, "Effect of Treated Wastewater Irrigation on Heavy Metals Distribution in a Tunisian Soil," Engineering, Technology & Applied Science Research, vol. 5, no. 3, pp. 805–810, Jun. 2015. DOI: https://doi.org/10.48084/etasr.563

N. Wang, N. Zhang, and M. Wang, "Wireless sensors in agriculture and food industry—Recent development and future perspective," Computers and Electronics in Agriculture, vol. 50, no. 1, pp. 1–14, Jan. 2006. DOI: https://doi.org/10.1016/j.compag.2005.09.003

D. D. Chaudhary, S. P. Nayse, and L. M. Waghmare, "Application of Wireless Sensor Networks for Greenhouse Parameter Control in Precision Agriculture," International Journal of Wireless & Mobile Networks, vol. 3, no. 1, pp. 140–149, Feb. 2011. DOI: https://doi.org/10.5121/ijwmn.2011.3113

M. Ilic, S. Ilic, S. Jovic, and S. Panic, "Early cherry fruit pathogen disease detection based on data mining prediction," Computers and Electronics in Agriculture, vol. 150, pp. 418–425, Jul. 2018. DOI: https://doi.org/10.1016/j.compag.2018.05.008

Md. R. Howlader, U. Habiba, R. H. Faisal, and Md. M. Rahman, "Automatic Recognition of Guava Leaf Diseases using Deep Convolution Neural Network," in 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), Cox’sBazar, Bangladesh, Oct. 2019, pp. 1–5. DOI: https://doi.org/10.1109/ECACE.2019.8679421

G. Sarp and M. Ozcelik, "Water body extraction and change detection using time series: A case study of Lake Burdur, Turkey," Journal of Taibah University for Science, vol. 11, no. 3, pp. 381–391, May 2017. DOI: https://doi.org/10.1016/j.jtusci.2016.04.005

S. H. Khan, X. He, F. Porikli, and M. Bennamoun, "Forest Change Detection in Incomplete Satellite Images With Deep Neural Networks," IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 9, pp. 5407–5423, Sep. 2017. DOI: https://doi.org/10.1109/TGRS.2017.2707528

H. Fathizad, M. A. Hakimzadeh Ardakani, R. T. Mehrjardi, and H. Sodaiezadeh, "Evaluating desertification using remote sensing technique and object-oriented classification algorithm in the Iranian central desert," Journal of African Earth Sciences, vol. 145, pp. 115–130, Sep. 2018. DOI: https://doi.org/10.1016/j.jafrearsci.2018.04.012

P. K. Mishra, A. Rai, and S. C. Rai, "Land use and land cover change detection using geospatial techniques in the Sikkim Himalaya, India," The Egyptian Journal of Remote Sensing and Space Science, vol. 23, no. 2, pp. 133–143, Aug. 2020. DOI: https://doi.org/10.1016/j.ejrs.2019.02.001

D. Murugan, A. Garg, and D. Singh, "Development of an Adaptive Approach for Precision Agriculture Monitoring with Drone and Satellite Data," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 10, no. 12, pp. 5322–5328, Sep. 2017. DOI: https://doi.org/10.1109/JSTARS.2017.2746185

C. Huang, Y. Chen, S. Zhang, and J. Wu, "Detecting, Extracting, and Monitoring Surface Water From Space Using Optical Sensors: A Review," Reviews of Geophysics, vol. 56, no. 2, pp. 333–360, 2018. DOI: https://doi.org/10.1029/2018RG000598

C. A. Rishikeshan and H. Ramesh, "An automated mathematical morphology driven algorithm for water body extraction from remotely sensed images," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 146, pp. 11–21, Dec. 2018. DOI: https://doi.org/10.1016/j.isprsjprs.2018.08.014

E. Kampianakis, J. Kimionis, K. Tountas, C. Konstantopoulos, E. Koutroulis, and A. Bletsas, "Backscatter sensor network for extended ranges and low cost with frequency modulators: Application on wireless humidity sensing," in 2013 IEEE SENSORS, Baltimore, MD, USA, Aug. 2013, pp. 1–4. DOI: https://doi.org/10.1109/ICSENS.2013.6688469

A. Daccache, J. W. Knox, E. K. Weatherhead, A. Daneshkhah, and T. M. Hess, "Implementing precision irrigation in a humid climate – Recent experiences and on-going challenges," Agricultural Water Management, vol. 147, pp. 135–143, Jan. 2015. DOI: https://doi.org/10.1016/j.agwat.2014.05.018

S. Sreejith and J. Nayak, "Study of hybrid median filter for the removal of various noises in digital image," Journal of Physics: Conference Series, vol. 1706, no. 1, Sep. 2020, Art. no. 012079. DOI: https://doi.org/10.1088/1742-6596/1706/1/012079

M. R. Rakesh, B. Ajeya, and A. R. Mohan, "Hybrid Median Filter for Impulse Noise Removal of an Image in Image Restoration," International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, vol. 2, no. 10, pp. 5117–5124, Oct. 2013.

Downloads

How to Cite

[1]
Usha, S.M. and Mahesh, H.B. 2022. Monitoring and Analysis of Agricultural Field Parameters in Order to Increase Crop Yield through a Colored Object Tracking Robot, Image Processing, and IOT. Engineering, Technology & Applied Science Research. 12, 4 (Aug. 2022), 8791–8795. DOI:https://doi.org/10.48084/etasr.5028.

Metrics

Abstract Views: 593
PDF Downloads: 502

Metrics Information