A Contribution to the Thermal Field Evaluation at the Tool-Part Interface for the Optimization of Machining Conditions

Authors

  • N. B. Serradj Department of Mechanical Engineering, University of Tlemcen, Algeria
  • A. D. K. Ali Department of Mechanical Engineering, University of Tlemcen, Algeria
  • M. E. A. Ghernaout Department of Mechanical Engineering, University of Tlemcen, Algeria
Volume: 11 | Issue: 6 | Pages: 7750-7756 | December 2021 | https://doi.org/10.48084/etasr.4235

Abstract

In this study, an experimental measurement methodology is implemented that allows obtaining consistent temperature data during the turning operation of semi-hard C20 steel using SNMG carbide insert, allowing us to have better control at the tool-part interface. The interactions of the phenomena influencing the cut led our choices on the development of a correlation model for the analysis and prediction of the relationships between the machining parameters by measurement of the temperature. The measurement procedure implemented for the temperature estimate is based on the use of an FLIR A325sc type infrared camera mounted and protected by a device on the machine tool. The Taguchi method was chosen to find the relationships between the input factors (cutting speed (Vc), feed rate (a), depth of cut (p)), and the output factor (temperature (T)). In the future, we will develop a numerical validation model to simulate the machining process in order to predict temperatures

Keywords:

machining conditions, temperature measurement, infrared camera, thermal transfer, ECRL., emissivity

Downloads

Download data is not yet available.

References

R. F. Brito, S. R. Carvalho, and S. M. M. Lima E Silva, “Experimental investigation of thermal aspects in a cutting tool using comsol and inverse problem,” Applied Thermal Engineering, vol. 86, pp. 60–68, Jul. 2015, https://doi.org/10.1016/j.applthermaleng.2015.03.083.

O. Pantalé, R. Rakotomalala, and M. Touratier, “An ALE three-dimensional model of orthogonal, oblique metal cutting processes,” International Journal of Forming Processes, vol. vol.1, pp. 371–388, Sep. 1998.

P. K. Wright and E. M. Trent, “Metallographic methods of determining temperatures gradients in cutting tools,” 1973.

W. Bouzid, “Etude experimentale et numerique de la coupe orthogonale,” Ph.D. dissertation, Arts et Métiers ParisTech, Paris, France, 1993.

D. A. Stephenson, “Tool-Work Thermocouple Temperature Measurements—Theory and Implementation Issues,” Journal of Engineering for Industry, vol. 115, no. 4, pp. 432–437, Nov. 1993, https://doi.org/10.1115/1.2901786.

I. Bonnet and J. Gabelli, “Probing Planck’s law at home,” European Journal of Physics, vol. 31, no. 6, pp. 1463–1471, 2010, https://doi.org/10.1088/0143-0807/31/6/012.

N. M. Ravindra, S. Rajyalaxmi Marthi, and A. Bañobre, “Introduction to radiative properties,” in Radiative Properties of Semiconductors, Morgan & Claypool Publishers, 2017, http://doi.org/10.1088/978-1-6817-4112-3ch1.

FLIR, “FLIR SC325 Datasheet.” FLIR, 2010.

D. Kara Ali, N. Benhadji Serradj, and M. E. A. Ghernaout, “Qualification and Validation of an in-situ Measurement Method of the Machining Temperature,” in Mechanism, Machine, Robotics and Mechatronics Sciences, vol. 58, R. Rizk and M. Awad, Eds. Cham, Switzerland: Springer, 2019, pp. 15–27, https://doi.org/10.1007/978-3-319-89911-4_2.

J.-L. Battaglia, A. Kusiak, and C. Pradere, Introduction aux transferts thermiques: cours et exercices corrigés. Paris, France: Dunod, 2020.

M. H. El-Axir, M. M. Elkhabeery, and M. M. Okasha, “Modeling and Parameter Optimization for Surface Roughness and Residual Stress in Dry Turning Process,” Engineering, Technology & Applied Science Research, vol. 7, no. 5, pp. 2047–2055, Oct. 2017, https://doi.org/10.48084/etasr.1560.

N. M. M. Reddy and P. K. Chaganti, “Investigating Optimum SiO2 Nanolubrication During Turning of AISI 420 SS,” Engineering, Technology & Applied Science Research, vol. 9, no. 1, pp. 3822–3825, Feb. 2019, https://doi.org/10.48084/etasr.2537.

M. PradeepKumar, K. Amarnath, and M. SunilKumar, “A Review on Heat Generation in Metal Cutting,” International Journal of Engineering and Management Research, vol. 5, no. 4, pp. 193–197, Aug. 2015.

G. Sidebotham, “Heat Transfer Modes: Conduction, Convection, and Radiation,” in Heat Transfer Modeling: An Inductive Approach, G. Sidebotham, Ed. Cham, Switzerland: Springer International Publishing, 2015, pp. 61–93, https://doi.org/10.1007/978-3-319-14514-3_3.

D. Pajani and L. Audaire, “Thermographie - Technologies et applications : Thermographie et utilisation des caméras thermiques,” Techniques de l’Ingénieur, Mar. 2013, Accessed: Oct. 06, 2021. [Online]. Available: https://www.techniques-ingenieur.fr/base-documentaire/genie-industriel-th6/mise-en-uvre-de-la-maintenance-42136210/thermographie-r2741/thermographie-et-utilisation-des-cameras-thermiques-r2741v2niv10002.html.

O. Riou, P.-O. Logerais, and J.-F. Durastanti, “Quantitative study of the temperature dependence of normal LWIR apparent emissivity,” Infrared Physics & Technology, vol. 60, pp. 244–250, Sep. 2013, https://doi.org/10.1016/j.infrared.2013.05.012.

J. Goupy and L. Creighton, Introduction aux plans d’expériences, 3rd ed. Paris, France: Dunod, 2006.

S. Atlati, “Développement d’une nouvelle approche hybride pour la modélisation des échanges thermiques à l’interface outil-copeau : application à l’usinage de l’alliage d’aluminium aéronautique AA2024-T351,” Ph.D. dissertation, Université de Lorraine, Lorraine, France, 2012.

Downloads

How to Cite

[1]
Serradj, N.B., Ali, A.D.K. and Ghernaout, M.E.A. 2021. A Contribution to the Thermal Field Evaluation at the Tool-Part Interface for the Optimization of Machining Conditions. Engineering, Technology & Applied Science Research. 11, 6 (Dec. 2021), 7750–7756. DOI:https://doi.org/10.48084/etasr.4235.

Metrics

Abstract Views: 648
PDF Downloads: 494

Metrics Information

Most read articles by the same author(s)