A Contribution to the Thermal Field Evaluation at the Tool-Part Interface for the Optimization of Machining Conditions
Received: 16 May 2021 | Revised: 7 June 2021 and 5 September 2021 | Accepted: 14 September 2021 | Online: 11 December 2021
Corresponding author: M. E. A. Ghernaout
Abstract
In this study, an experimental measurement methodology is implemented that allows obtaining consistent temperature data during the turning operation of semi-hard C20 steel using SNMG carbide insert, allowing us to have better control at the tool-part interface. The interactions of the phenomena influencing the cut led our choices on the development of a correlation model for the analysis and prediction of the relationships between the machining parameters by measurement of the temperature. The measurement procedure implemented for the temperature estimate is based on the use of an FLIR A325sc type infrared camera mounted and protected by a device on the machine tool. The Taguchi method was chosen to find the relationships between the input factors (cutting speed (Vc), feed rate (a), depth of cut (p)), and the output factor (temperature (T)). In the future, we will develop a numerical validation model to simulate the machining process in order to predict temperatures
Keywords:
machining conditions, temperature measurement, infrared camera, thermal transfer, ECRL., emissivityDownloads
References
R. F. Brito, S. R. Carvalho, and S. M. M. Lima E Silva, “Experimental investigation of thermal aspects in a cutting tool using comsol and inverse problem,” Applied Thermal Engineering, vol. 86, pp. 60–68, Jul. 2015, https://doi.org/10.1016/j.applthermaleng.2015.03.083.
O. Pantalé, R. Rakotomalala, and M. Touratier, “An ALE three-dimensional model of orthogonal, oblique metal cutting processes,” International Journal of Forming Processes, vol. vol.1, pp. 371–388, Sep. 1998.
P. K. Wright and E. M. Trent, “Metallographic methods of determining temperatures gradients in cutting tools,” 1973.
W. Bouzid, “Etude experimentale et numerique de la coupe orthogonale,” Ph.D. dissertation, Arts et Métiers ParisTech, Paris, France, 1993.
D. A. Stephenson, “Tool-Work Thermocouple Temperature Measurements—Theory and Implementation Issues,” Journal of Engineering for Industry, vol. 115, no. 4, pp. 432–437, Nov. 1993, https://doi.org/10.1115/1.2901786.
I. Bonnet and J. Gabelli, “Probing Planck’s law at home,” European Journal of Physics, vol. 31, no. 6, pp. 1463–1471, 2010, https://doi.org/10.1088/0143-0807/31/6/012.
N. M. Ravindra, S. Rajyalaxmi Marthi, and A. Bañobre, “Introduction to radiative properties,” in Radiative Properties of Semiconductors, Morgan & Claypool Publishers, 2017, http://doi.org/10.1088/978-1-6817-4112-3ch1.
FLIR, “FLIR SC325 Datasheet.” FLIR, 2010.
D. Kara Ali, N. Benhadji Serradj, and M. E. A. Ghernaout, “Qualification and Validation of an in-situ Measurement Method of the Machining Temperature,” in Mechanism, Machine, Robotics and Mechatronics Sciences, vol. 58, R. Rizk and M. Awad, Eds. Cham, Switzerland: Springer, 2019, pp. 15–27, https://doi.org/10.1007/978-3-319-89911-4_2.
J.-L. Battaglia, A. Kusiak, and C. Pradere, Introduction aux transferts thermiques: cours et exercices corrigés. Paris, France: Dunod, 2020.
M. H. El-Axir, M. M. Elkhabeery, and M. M. Okasha, “Modeling and Parameter Optimization for Surface Roughness and Residual Stress in Dry Turning Process,” Engineering, Technology & Applied Science Research, vol. 7, no. 5, pp. 2047–2055, Oct. 2017, https://doi.org/10.48084/etasr.1560.
N. M. M. Reddy and P. K. Chaganti, “Investigating Optimum SiO2 Nanolubrication During Turning of AISI 420 SS,” Engineering, Technology & Applied Science Research, vol. 9, no. 1, pp. 3822–3825, Feb. 2019, https://doi.org/10.48084/etasr.2537.
M. PradeepKumar, K. Amarnath, and M. SunilKumar, “A Review on Heat Generation in Metal Cutting,” International Journal of Engineering and Management Research, vol. 5, no. 4, pp. 193–197, Aug. 2015.
G. Sidebotham, “Heat Transfer Modes: Conduction, Convection, and Radiation,” in Heat Transfer Modeling: An Inductive Approach, G. Sidebotham, Ed. Cham, Switzerland: Springer International Publishing, 2015, pp. 61–93, https://doi.org/10.1007/978-3-319-14514-3_3.
D. Pajani and L. Audaire, “Thermographie - Technologies et applications : Thermographie et utilisation des caméras thermiques,” Techniques de l’Ingénieur, Mar. 2013, Accessed: Oct. 06, 2021. [Online]. Available: https://www.techniques-ingenieur.fr/base-documentaire/genie-industriel-th6/mise-en-uvre-de-la-maintenance-42136210/thermographie-r2741/thermographie-et-utilisation-des-cameras-thermiques-r2741v2niv10002.html.
O. Riou, P.-O. Logerais, and J.-F. Durastanti, “Quantitative study of the temperature dependence of normal LWIR apparent emissivity,” Infrared Physics & Technology, vol. 60, pp. 244–250, Sep. 2013, https://doi.org/10.1016/j.infrared.2013.05.012.
J. Goupy and L. Creighton, Introduction aux plans d’expériences, 3rd ed. Paris, France: Dunod, 2006.
S. Atlati, “Développement d’une nouvelle approche hybride pour la modélisation des échanges thermiques à l’interface outil-copeau : application à l’usinage de l’alliage d’aluminium aéronautique AA2024-T351,” Ph.D. dissertation, Université de Lorraine, Lorraine, France, 2012.
Downloads
How to Cite
License
Copyright (c) 2021 N. B. Serradj, A. D. K. Ali, M. E. A. Ghernaout
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after its publication in ETASR with an acknowledgement of its initial publication in this journal.