Experimental Characterization of Bacterial Concrete Against Mechanical and Durability Performance
Received: 6 December 2020 | Revised: 15 December 2020 | Accepted: 1 January 2021 | Online: 6 February 2021
Corresponding author: A. S. Buller
Abstract
This study experimentally investigates the mechanical and durability performance of bacteria concrete in terms of density, compressive strength, split tensile strength, and water absorption capacity. The concrete specimens were produced with a ratio of 1:2:4, w/c ratio of 0.45, and having a bacteria dosage level ranging from 1 to 6% by weight of water. To investigate the usefulness of the bacteria dosage level, cubic and cylindrical specimens were cast and tested after 28 days of water curing in a Universal Testing Machine with a constant loading rate. The density of each specimen was also recorded soon after casting and after the curing period ended. Moreover, the water absorption test was similarly conducted on cube specimens at various time intervals to record the penetration depth. The test results of normal concrete (without bacteria) were compared with the ones of the specimens containing bacteria. The optimum level of bacteria was found to be 3.5%, which showed the highest values in terms of compressive strength, split tensile strength, and density. Bacteria tend to generate more crystalline materials inside the concrete mass due to reactions with the surrounding moisture which produces a compact surface, thus strength properties were improved and water penetration was blocked which suggests better durability of the concrete.
Keywords:
bacteria, curing, compressive strength, tensile strength, density, water absorptionDownloads
References
A. Amiri, M. Azima, and Z. B. Bundur, "Crack remediation in mortar via biomineralization: Effects of chemical admixtures on biogenic calcium carbonate," Construction and Building Materials, vol. 190, pp. 317-325, Nov. 2018. https://doi.org/10.1016/j.conbuildmat.2018.09.083
N. Chahal, R. Siddique, and A. Rajor, "Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of concrete incorporating silica fume," Construction and Building Materials, vol. 37, pp. 645-651, Dec. 2012. https://doi.org/10.1016/j.conbuildmat.2012.07.029
S.-G. Choi, K. Wang, Z. Wen, and J. Chu, "Mortar crack repair using microbial induced calcite precipitation method," Cement and Concrete Composites, vol. 83, pp. 209-221, Oct. 2017. https://doi.org/10.1016/j.cemconcomp.2017.07.013
W. De Muynck, D. Debrouwer, N. De Belie, and W. Verstraete, "Bacterial carbonate precipitation improves the durability of cementitious materials," Cement and Concrete Research, vol. 38, no. 7, pp. 1005-1014, Jul. 2008. https://doi.org/10.1016/j.cemconres.2008.03.005
N. Kunal, R. Siddique, A. Rajor, and M. Singh, "Influence of Bacterial-Treated Cement Kiln Dust on Strength and Permeability of Concrete," Journal of Materials in Civil Engineering, vol. 28, no. 10, p. 04016088, Oct. 2016. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001593
C. V. S. R. P. Lakshmi T. V. S. Vara, "Effect of Crushed Sand and Bacillus Subtilis on the Cantabro Loss of Bacterial Concrete," IJTech - International Journal of Technology, vol. 10, no. 4, pp. 753-764, Jul. 2019. https://doi.org/10.14716/ijtech.v10i4.2299
R. Mors and H. M. Jonkers, "Bacteria-based self-healing concrete: evaluation of full scale demonstrator projects," RILEM Technical Letters, vol. 4, pp. 138-144, 2019. https://doi.org/10.21809/rilemtechlett.2019.93
N. D. Belie and J. Wang, "Bacteria-based repair and self-healing of concrete," Journal of Sustainable Cement-Based Materials, vol. 5, no. 1-2, pp. 35-56, Mar. 2016. https://doi.org/10.1080/21650373.2015.1077754
A. Khalifeh, B. Roozbehani, A. M. Moradi, S. I. Moqadam, and M. Mirdrikvand, "Isolation of Crude Oil from Polluted Waters Using Biosurfactants Pseudomonas Bacteria: Assessment of Bacteria Concentration Effects," Engineering, Technology & Applied Science Research, vol. 3, no. 2, pp. 396-401, Apr. 2013. https://doi.org/10.48084/etasr.265
J. Dick et al., "Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species," Biodegradation, vol. 17, no. 4, pp. 357-367, Aug. 2006. https://doi.org/10.1007/s10532-005-9006-x
P. K. Mehta, "Advancements in Concrete Technology," Concrete International, vol. 21, no. 6, pp. 69-76, Jun. 1999.
C. Rodriguez-Navarro, M. Rodriguez-Gallego, K. B. Chekroun, and M. T. Gonzalez-Muñoz, "Conservation of Ornamental Stone by Myxococcus xanthus-Induced Carbonate Biomineralization," Applied and Environmental Microbiology, vol. 69, no. 4, pp. 2182-2193, Apr. 2003. https://doi.org/10.1128/AEM.69.4.2182-2193.2003
S. Stocks-Fischer, J. K. Galinat, and S. S. Bang, "Microbiological precipitation of CaCO3," Soil Biology and Biochemistry, vol. 31, no. 11, pp. 1563-1571, Oct. 1999. https://doi.org/10.1016/S0038-0717(99)00082-6
J. Rex, J. S. Babu, and S. P. S. Reddy, "Strength and Durability Aspects of Bacterial Concrete," International Journal of Innovative Technology and Exploring Engineering, vol. 8, no. 2S2, pp. 9-13, Dec. 2018.
V. Nagarajan, T. K. Prabhu, M. G. Shankar, and P. Jagadesh, "A Study on the Strength of the Bacterial Concrete Embedded with Bacillus Megaterium," International Research Journal of Engineering and Technology, vol. 4, no. 12, pp. 1784-1788, Dec. 2017.
Z. Y. Ilerisoy and Y. Takva, "Nanotechnological Developments in Structural Design: Load-Bearing Materials," Engineering, Technology & Applied Science Research, vol. 7, no. 5, pp. 1900-1903, Oct. 2017. https://doi.org/10.48084/etasr.1414
Downloads
How to Cite
License
Copyright (c) 2021 Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after its publication in ETASR with an acknowledgement of its initial publication in this journal.