Structural and Electrical Properties of Ca2+ Doped LaFeO3: The Effect of A-site Cation Size Mismatch

Keywords: cation size mismatch, lattice distortion, particle size, grain size, charge order

Abstract

In this study, nanosized La1-xCaxFeO3 (0.00≤x≤0.40) compounds prepared via sol-gel method followed by heat treatment at 1100oC for 24 hours are studied. Crystal structure, microstructure, surface morphology and temperature-dependent resistivity of the samples are investigated. TEM investigation reveals nanoparticles with an average size of 35nm produced from the sol-gel process. The crystal structure of the compounds belongs to an orthorhombically distorted perovskite structure with Pbnm space group. Lattice distortion and cation size mismatch increase with an increase in Ca and particle and grain growth are suppressed by Ca doping. Electrical conduction is explained via thermally activated hopping of small polarons. Unit cell volume, charge ordering temperature, and activation energy for small polarons decrease linearly with an increase in cation size mismatch. Room temperature resistivity decreases with Ca doping and gets its minimum value for 30% Ca at which the orthorhombic distortion is maximum.

Downloads

Download data is not yet available.

References

K. Mukhopadhyay, A. S. Mahapatra, P. K. Chakrabarti, “Multiferroic behavior, enhanced magnetization and exchange bias effect of Zn substituted nanocrystalline LaFeO3 (La(1−x)ZnxFeO3, x=0.10, and 0.30)”, Journal of Magnetism and Magnetic Materials, Vol. 329, pp. 133–141, 2013

X Liu, B. Cheng, J. Hu, H. Qin, M. Jiang, “Preparation, structure, resistance and methane-gas sensing properties of nominal La1−xMgxFeO3”, Sensors and Actuators B: Chemical, Vol. 133, No. 1, pp. 340-344, 2008

X. Dai, C. Yu, Q. Wu, “Comparison of LaFeO3, La0.8Sr0.2FeO3, and La0.8Sr0.2Fe0.9Co0.1O3 perovskite oxides as oxygen carrier for partial oxidation of methane”, Journal of Natural Gas Chemistry, Vol. 17, No. 4, pp. 415-418, 2008

Q. Lin, J. Xu, F. Yang, X. Yang, Y. He, “The influence of Ca substitution on LaFeO3 nanoparticles in terms of structural and magnetic properties”, Journal of Applied Biomaterials and Functional Materials, Vol. 16, No. 1, pp. 17–25, 2018

A. M. Stoneham, J. Gavartin, A. L. Shluger, A. V. Kimmel, D. M. Ramo, H. M. Ronnow, G. Aeppli, C. Renner, “Trapping, self-trapping and the polaron family”, Journal of Physics: Condensed Matter, Vol. 19, No. 25, Article ID 255208, 2007

Z. Zhou, L. Guo, H. Yang, Q. Liu, F. Ye, “Hydrothermal synthesis and magnetic properties of multiferroic rare-earth orthoferrites”, Journal of Alloys and Compounds, Vol. 583, pp. 21-31, 2014

L. Hou, G. Sun, K. Liu, Y. Li, F. Gao, “Preparation, characterization and investigation of catalytic activity of Li-doped LaFeO3 nanoparticles”, Journal of Sol-Gel Science and Technology, Vol. 40, pp. 9–14, 2006

K. Taniguchi, N. Okinaka, T. Akiyama, “Preparation and characterization of La1−xKxFeO3 (x=0–1) by self-propagating high-temperature synthesis for use as soot combustion catalyst”, Journal of Alloys and Compounds, Vol. 509, No. 10, pp. 4084–4088, 2011

L. Sun, H. Qin, K. Wang, M. Zhao, J. Hu, “Structure and electrical properties of nanocrystalline La1−xBaxFeO3 for gas sensing application”, Materials Chemistry and Physics, Vol. 125, No. 1-2, pp. 305-308, 2011

P. Song, H. Qin, L. Zhang, K. An, Z. Lin, J. Hu, M. Jiang, “The structure, electrical and ethanol-sensing properties of La1−xPbxFeO3 perovskite ceramics with x≤0.3”, Sensors and Actuators B: Chemical, Vol. 104, No. 2, pp. 312-316, 2005

R. Andoulsi, K. H. Naifer, M. Ferid, “Structural and electrical properties of calcium substituted lanthanum ferrite powders”, Powder Technology, Vol. 230, pp. 183–187, 2012

L. B. Kong, Y. S. Shen, “Gas-sensing property and mechanism of CaxLa1xFeO3 ceramics”, Sensors and Actuators B: Chemical, Vol. 30, No. 3, pp. 217–221, 1996

M. H. Hung, M. V. M. Rao, D. S. Tsai, “Microstructures and electrical properties of calcium substituted LaFeO3 as SOFC cathode”, Materials Chemistry and Physics, Vol. 101, No. 2-3, pp. 297–302, 2007

A. Benali, S. Azizi, M. Bejar, E. Dhahri, M. F. P. Graca, “Structural, electrical and ethanol sensing properties of double-doping LaFeO3 perovskite oxides”, Ceramics International, Vol. 40, No. 9, pp. 14367-14373, 2014

L. Zhang, J. Hu, P. Song, H. Qin, M. Jiang, “Electrical properties and ethanol-sensing characteristics of perovskite La1−xPbxFeO3”, Sensors and Actuators B: Chemical, Vol. 114, No. 2, pp. 836-840, 2006

C. Shi, H. Qin, M. Zhao, X. Wang, L. Li, J. Hu, “Investigation on electrical transport, CO sensing characteristics and mechanism for nanocrystalline La1−xCaxFeO3 sensors”, Sensors and Actuators B: Chemical, Vol. 190, pp. 25-31, 2014

R. Andoulsi, K. H. Naifer, M. Ferid, “Electrical conductivity of La1−xCaxFeO3−δ solid solutions”, Ceramics International, Vol. 39, No. 6, pp. 6527-6531, 2013

A. E. Irmak, E. Tasarkuyu, A. Coskun, M. Acet, Y. Samancioglu, S. Akturk, “Magnetic and electrical transport properties of La0.65Ca0.30Pb0.05Mn0.90Cu0.10O3 compounds: Thermal hysteresis”, Physica B: Condensed Matter, Vol. 470–471, pp. 56-63, 2015

J. R. Carvajal, “Fullprof: A program for rietveld refinement and pattern matching analysis”, Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, July 19-8, 1990

J. Li, “Investigation of orthorhombic perovskite La1-xCaxFeO3-y(0 ≤ x ≤ 0.50)”, Physica Scripta, Vol. 45, pp. 62-64, 1992

A. L. Patterson, “The Scherrer formula for X-ray particle size determination”, Physical Review, Vol. 56, pp. 978-982, 1939

K. Ellmer, A. Bikowski, “Intrinsic and extrinsic doping of ZnO and ZnO alloys”, Journal of Physics D: Applied Physics, Vol. 49, No. 41, Article ID 413002, 2016

Z. Jirak, S. Krupicka, Z. Simsa, M. Dlouha, S. Vratislav, “Neutron diffraction study of Pr1−xCaxMnO3 perovskites”, Journal of Magnetism and Magnetic Materials, Vol. 53, No. 1-2, pp. 153-166, 1985

D. Nath, F. Singh, R. Das, “X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles-a comparative study”, Materials Chemistry and Physics, Vol. 239, Article ID 122021, 2020

Y. F. Sun, S. B. Liu, F. L. Meng, J. Y. Liu, Z. Jin, L. T. Kong, J. H. Liu, “Metal oxide nanostructures and their gas sensing properties: A review”, Sensors, Vol. 12, No. 3, pp 2610–2631, 2012

G. A. Gamal, F. A. A. Mufadi, A. H. Said, “Effect of iron additives on the microstructure of hydroxyapatite”, Engineering, Technology & Applied Science Research, Vol. 3, No. 6, pp. 532-539, 2013

M. F. Garcia, J. A. Rodriguez, “Metal oxide nanoparticles”, in: Encyclopedia of Inorganic and Bioinorganic Chemistry, John Wiley & Sons, 2011

S. Boumous, S. Belkhiat, F. Kharchouche, “MgO effect on the dielectric properties of BaTiO3”, Engineering, Technology & Applied Science Research, Vol. 9, No. 3, pp. 4092-4099, 2019

V. Rathod, A. V. Anupama, V. M. Jali, V. A. Hiremath, B. Sahoo, “Combustion synthesis, structure and magnetic properties of Li-Zn ferrite ceramic powders”, Ceramics International, Vol. 43, No. 16, pp. 14431–14440, 2017

M. Allieta, M. Scavini, L. L. Presti, M. Coduri, L. Loconte, S. Cappelli, C. Oliva, P. Ghigna, P. Pattison, V. Scagnoli, “Charge ordering transition in GdBaCo2O5: Evidence of reentrant behavior”, Physical Review B, Vol. 88, Article ID 214104, 2013

Y. Wang, Y. Sui, X. Wang, W. Su, “Structure, transport and magnetic properties of electron-doped perovskites RxCa1-xMnO3 (R=La, Y and Ce)”, Journal of Physics: Condensed Matter, Vol. 21, Article ID 196004, 2009

M. Respaud, J. M. Broto, H. Rakoto, J. Vanacken, P. Wagner, C. Martin, A. Maignan, B. Raveau, “H−T magnetic phase diagrams of electron-doped Sm1−xCaxMnO3: Evidence for phase separation and metamagnetic transitions”, Physical Revew B, Vol. 63, Article ID 144426, 2001

L. M. R. Martinez, J. P. Attfield, “Cation disorder and size effects in magnetoresistive manganese oxide perovskites”, Physical Review B, Vol. 54, Article ID R15622, 1996

A. Arulraj, P. N. Santhosh, R. S. Gopalan, A. Guha, A. K. Raychaudhuri, N. Kumar, C. N. R. Rao, “Charge ordering in the rare-earth manganates: The origin of the extraordinary sensitivity to the average radius of the A-site cations, ”, Journal of Physics: Condensed Matter, Vol. 10, Article ID 8497, 1998

A. J. Millis, P. B. Littlewood, B. I. Shraiman, “Double exchange alone does not explain the resistivity of La1−xSrxMnO3”, Physical Review Letters, Vol. 74, Article ID 5144, 1995

W. H Jung, E. Icuchi, “Transition from hopping conduction to band conduction in LaFexNi1–xO3”, Philosophical Magazine B, Vol. 73, pp. 873-891, 1996

N. F. Mott, E. A. Davis, Electronics processes in non-crystalline materials, Oxford University Press, 1971

I. G Austin, N. F. Mott, “Polarons in crystalline and non-crystalline materials”, Advances in Physics, Vol. 18, No. 71, pp. 41-102, 1969

S. Brahma, R. N. P. Choudhary, A. K. Thakur, “AC impedance analysis of LaLiMo2O8 electroceramics”, Physica B: Condensed Matter, Vol. 355, No. 1-4, pp. 188-201, 2005

P. Ganguly, A. K. Jha, K. L. Deori, “Complex impedance studies of tungsten–bronze structured Ba5SmTi3Nb7O30 ferroelectric ceramics”, Solid State Communications, Vol. 146, No. 11-12, pp. 472-477, 2008

M. Idrees, M. Nadeem, M. M. Hassan, “Investigation of conduction and relaxation phenomena in LaFe0.9Ni0.1O3 by impedance spectroscopy”, Journal of Physics D: Applied Physics, Vol. 43, No. 15, Article ID 155401, 2010

H. Rahmouni, R. Jemai, M. Nouiri, N. Kallel, F. Rziguac, A. Selmi, K. Khirouni, S. Alaya, “Admittance spectroscopy and complex impedance analysis of Ti-modified La0.7Sr0.3MnO3”, Journal of Crystal Growth, Vol. 310, No. 3, pp. 556-561, 2008

S. Satpathy, Z. S. Popovic, F. R. Vukajlovic, “Electronic structure of the perovskite oxides: La1−xCaxMnO3”, Physical Review Letters, Vol. 76, Article ID 960, 1996

W. Khan, A. H. Naqvi, M. Gupta, S. Husain, R. Kumar, “Small polaron hopping conduction mechanism in Fe doped LaMnO3”, The Journal of Chemical Physics, Vol. 135, Article ID 054501, 2011

Y. Liu, X. Y. Qin, “Temperature dependence of electrical resistivity for Ca-doped perovskite-type Y1−xCaxCoO3 prepared by sol–gel process”, Journal of Physical Chemistry of Solids, Vol. 67, No. 8, pp. 1893-1898, 2006

Metrics

Abstract Views: 132
PDF Downloads: 57

Metrics Information
Bookmark and Share