Temperature Effect on Al/p-CuInS2/SnO2(F) Schottky Diodes
Abstract
In this paper, Schottky diodes (SDs) obtained by evaporated thin films of aluminum on pulverized p-CuInS2/SnO2:F have been studied using J-V-T characteristics in a temperature range of 200-340K. These characteristics show that aluminum acts as a rectifier metal-semiconductor contact. Characteristic variables of the Al/p-CuInS2/SnO2:F junctions, such as the current density, the serial resistance, the parallel conductance, the Schottky barrier height (SBH), and the ideality factor of the SD were obtained by fitting the J-V-T data using the Lambert function. Data analysis was conducted with the use of MATLAB. Results showed that n is greater than 1, which could be explained by the existence of inhomogeneities due to the grain boundaries in CuInS2. Through this analysis, one can see a good agreement between experimental and modeled data. The study has shown that the main contribution in the current conduction in such heterostructures is the thermionic emission (TE) supported by the recombination of the carriers. The last phenomenon appears mainly in the grain boundaries, which contain both intrinsic and extrinsic defects (secondary phases, segregated oxygen). An investigation of the J-V-T characteristics according to TE theory has demonstrated that the current density and the SBH increase while serial resistance, parallel conductance decrease with an increase in temperature. After an SBH inhomogeneity correction, the modified Richardson constant and the mean barrier height were found to be 120AK-2cm-2 and 1.29eV respectively. This kind of behavior has been observed in many metal-semiconductor contacts.
Keywords:
CuInS2, thin films, spray pyrolysis, Schottky diodes, Lambert functionDownloads
References
J. S. Gardner, E. Shurdha, C. Wang, L. D. Lau, R. G. Rodriguez, J. J. Pak, “Rapid synthesis and size control of CuInS2 semi-conductor nanoparticles using microwave irradiation”, Journal of Nanoparticle Research, Vol. 10, No. 4, pp. 633-641, 2008 DOI: https://doi.org/10.1007/s11051-007-9294-7
M. O. Lopez, O. V. Galan, F. C. Gandarilla, O. S. Feria, “Preparation of AgInS2 chalcopyrite thin films by chemical spray pyrolysis”, Materials Research Bulletin, Vol. 38, No. 1, pp. 55-61, 2003 DOI: https://doi.org/10.1016/S0025-5408(02)00999-6
Y. Akaki, S. Kurihara, M. Shirahama, K. Tsurugida, S. Seto, T. Kakeno, K. Yoshino, “Structural, electrical and optical properties of AgInS2 thin films grown by thermal evaporation method”, Journal of Physics and Chemistry of Solids, Vol. 66, No. 11, pp. 1858-1861, 2005 DOI: https://doi.org/10.1016/j.jpcs.2005.09.005
C. C. Landry, J. Lockwood, A. R. Barron, “Synthesis of chalcopyrite semiconductors and their solid solutions by microwave irradiation”, Chemistry of Materials, Vol. 7, No. 4, pp. 699-706, 1995 DOI: https://doi.org/10.1021/cm00052a015
R. Klenk, J. Klaer, R. Scheer, M. C. L. Steiner, I. Luck, N. Meyer, U. Ruhle, “Solar cells based on CuInS2-An overview”, Thin Solid Film, Vol. 480-481, pp. 509-514, 2005 DOI: https://doi.org/10.1016/j.tsf.2004.11.042
W. Vallejo, C. A. Arredondo, G. Gordillo, “Synthesis and characterization of Zn(O,OH)S and AgInS2 layers to be used in thin film solar cells”, Applied Surface Science, Vol. 257, No. 2, pp. 503-507, 2010 DOI: https://doi.org/10.1016/j.apsusc.2010.07.021
W. Zhang, D. Li, Z. Chen, M. Sun, W. Li, Q. Lin, X. Fu, “Microwave hydrothermal synthesis of AgInS2 with visible light photocatalytic activity”, Materials Research Bulletin, Vol. 46, No. 7, pp. 975–982, 2011 DOI: https://doi.org/10.1016/j.materresbull.2011.03.026
J. Hu, Q. Lu, K. Tang, Y. Qian, G. Zhou, X. Liu, “Solvothermal reaction route to nanocrystalline semiconductors AgMS2 (M=Ga, In)”, Chemical Communications, Vol. 12, pp. 1093-1094, 1999 DOI: https://doi.org/10.1039/a902218j
Z. Aissa, A. Bouzidi, M. Amlouk, “Study of the I–V characteristics of SnO2:F/AgInS2 (p)/Al Schottky diodes”, Journal of Alloys and Compounds, Vol. 506, No. 2, pp. 492-495, 2010 DOI: https://doi.org/10.1016/j.jallcom.2010.07.053
T. Wada, H. Kinoshita, S. Kawata, “Preparation of chalcopyrite-type CuInSe2 by non-heating process”, Thin Solid Film, Vol. 431-432, pp. 11-15, 2003 DOI: https://doi.org/10.1016/S0040-6090(03)00231-1
B. Mao, C. H. Chuang, J. Wang, C. Burda, “Synthesis and photophysical properties of ternary I–III–VI AgInS2 nanocrystals: Intrinsic versus surface states”, Journal of Physical Chemistry C, Vol. 115, No. 18, pp. 8945-8954, 2011 DOI: https://doi.org/10.1021/jp2011183
L. Tian, J. J. Vittal, “Synthesis and characterization of ternary AgInS2 nanocrystals by dual- and multiple-source methods”, New Journal of Chemistry, Vol. 31, pp. 2083-2087, 2007 DOI: https://doi.org/10.1039/b707960e
K. Yoshino, H. Komaki, T. Kakeno, Y. Akaki, T. Ikari, “Growth and characterization of p-type AgInS2 crystals”, Journal of Physics and Chemistry of Solids, Vol. 64, No. 9-10, pp. 1839-1842, 2003 DOI: https://doi.org/10.1016/S0022-3697(03)00097-0
L. L. Kazmerski, S. Wagner, Current Topics in Photovoltaics, Academic Press, New York, 1985
E. H. Rhoderick, R. H. Williams, Metal-Semiconductor Contacts, Clarendon Press, 1988
S. M. Sze, K. K. Ng, Physics of Semiconductor Devices, Wiley, New York, 1981
R. T. Tung, “Recent advances in Schottky barrier concepts”, Materials Science and Engineering: R: Reports, Vol. 35, No. 1-3, pp. 1-138, 2001 DOI: https://doi.org/10.1016/S0927-796X(01)00037-7
E. Gur, S. Tuzemen, B. Kilic, C. Coskun, “High-Temperature Schottky Diode Characteristics of Bulk ZnO”, Journal of Physics: Condensed Matter, Vol. 19, No. 19, Article ID 196206, 2007 DOI: https://doi.org/10.1088/0953-8984/19/19/196206
N. Rouag, L. Boussouar, S. Toumi, Z. Ounnoughi, M. A. Djouadi, “On the difference in the apparent barrier height of inhomogeneous Schottky diodes with a Gaussian distribution”, Semiconductor Science and Technology, Vol. 22, No. 4, pp. 369-373, 2007 DOI: https://doi.org/10.1088/0268-1242/22/4/012
D. M. Kim, D. H. Kim, S. Y. Lee, “Characterization and modeling of temperature-dependent barrier heights and ideality factors in GaAs Schottky diodes”, Solid-State Electron., Vol. 51, No. 6, pp. 865-869, 2007 DOI: https://doi.org/10.1016/j.sse.2007.04.006
J. Dhananjay, S. Nagaraju, B. Krupanidhi, “Investigations on magnetron sputtered ZnO thin films and Au/ZnO Schottky diodes”, Physica B: Condensed Matter, Vol. 391, No. 2, pp. 344-349, 2007 DOI: https://doi.org/10.1016/j.physb.2006.10.017
A. R. Arehart, B. Moran, J. S. Speck, U. K. Mishra, S. P. Den Baars, S. A. Ringel, “Effect of Threading Dislocation Density on Ni∕n-GaN Schottky Diode I-V Characteristics”, Journal of Applied Physics, Vol. 100, No. 2, Article ID 023709, 2006 DOI: https://doi.org/10.1063/1.2219985
A. F. Qasrawi, “Fabrication and characterization of TO/GaSe/(Ag, Au) Schottky diodes”, Semiconductor Science and Technology, Vol. 21, No. 6, pp. 794-798, 2006 DOI: https://doi.org/10.1088/0268-1242/21/6/015
J. H. Werner, H. H. Guttler, “Temperature dependence of Schottky barrier heights on silicon”, Journal of Applied Physics, Vol. 73, No. 3, pp. 1315-1319, 1993 DOI: https://doi.org/10.1063/1.353249
S. Chattopadhyay, L. K. Bera, S. K. Ray, C. K. Maiti, “Pt/p -strained-Si Schottky diode characteristics at low temperature”, Applied Physics Letters, Vol. 71, No. 7, pp. 942-944, 1997 DOI: https://doi.org/10.1063/1.119696
T. P. Chen, T. C. Lee, C. C. Ling, C. D. Beling, S. Fung, “Current transport and its effect on the determination of the Schottky-barrier height in a typical system: Gold on silicon”, Solid-State Electronics, Vol. 36, No. 7, pp. 949-954, 1993 DOI: https://doi.org/10.1016/0038-1101(93)90109-4
M. K. Hudait, P. Venkatesvarlu, S. B. Krupanidhi, “Electrical transport characteristics of Au/n-GaAs Schottky diodes on n-Ge at low temperatures”, Solid-State Electronics, Vol. 45, No. 1, pp. 133-141, 2001 DOI: https://doi.org/10.1016/S0038-1101(00)00230-6
S. Karata, S. Altindal, A. Turut, A. Ozmen, “Temperature dependence of characteristic parameters of the H-terminated Sn/p-Si(1 0 0) Schottky contacts”, Applied Surface Science, Vol. 217, No. 1-4, pp. 250-260, 2003 DOI: https://doi.org/10.1016/S0169-4332(03)00564-6
T. Sawada, Y. Ito, N. Kimura, K. Imai, K. Suzuki, S. Sakai, “Characterization of metal/GaN Schottky interfaces based on I–V–T characteristics”, Applied Surface Science, Vol. 190, No. 1-4, pp. 326-329, 2002 DOI: https://doi.org/10.1016/S0169-4332(01)00904-7
J. Osvald, Zs. J. Horvath, “Theoretical study of the temperature dependence of electrical characteristics of Schottky diodes with an inverse near-surface layer”, Applied Surface Science, Vol. 234, No. 1-4, pp. 349-354, 2004 DOI: https://doi.org/10.1016/j.apsusc.2004.05.046
N. Tugluoglu, S. Karadeniz, M. Sahin, H. Safak, “Temperature dependence of current–voltage characteristics of Ag/p-SnSe Schottky diodes”, Applied Surface Science, Vol. 233, No. 1-4, pp. 320-327, 2004 DOI: https://doi.org/10.1016/j.apsusc.2004.03.238
M. Soylu, B. Abay, “Barrier characteristics of gold Schottky contacts on moderately doped n-InP based on temperature dependent I–V and C–V measurements”, Microelectronic Engineering, Vol. 86, No. 1, pp. 88-95, 2009 DOI: https://doi.org/10.1016/j.mee.2008.09.045
W. Mtangi, F. D. Auret, C. Nyamhere, P. J. J. V. Rensburg, M. Diale, A. Chawanda, “Analysis of temperature dependent I-V measurements on Pd/ZnO Schottky barrier diodes and the determination of the Richardson constant”, Physica B: Condensed Matter, Vol. 404, No. 8-11, pp. 1092-1096, 2009 DOI: https://doi.org/10.1016/j.physb.2008.11.022
F. E. Cimilli, M. Saglam, H. Efeoglu, A. Turut, “Temperature-dependent current–voltage characteristics of the Au/n-InP diodes with inhomogeneous Schottky barrier height”, Physica B: Condensed Matter, Vol. 404, No. 8-11, pp. 1558-1562, 2009 DOI: https://doi.org/10.1016/j.physb.2009.01.018
O. F. Yuksel, “Temperature dependence of current–voltage characteristics of Al/p-Si (100) Schottky barrier diodes”, Physica B: Condensed Matter, Vol. 404, No. 14-15, pp. 1993-1997, 2009 DOI: https://doi.org/10.1016/j.physb.2009.03.026
M. Pattabi, S. Krishnan, Ganesh, X. Mathew, “Effect of temperature and electron irradiation on the I–V characteristics of Au/CdTe Schottky diodes”, Solar Energy, Vol. 81, No. 1, pp. 111-116, 2007 DOI: https://doi.org/10.1016/j.solener.2006.06.004
F. Brovelli, B. L. Rivas, J. C. Bernede, “Synthesis of polymeric thin films by electrochemical polymerization of 1-furfuryl pyrrole. characterization and charge injection mechanism”, Journal of the Chilean Chemical Society, Vol. 52, No. 1, pp. 1065-1068, 2007 DOI: https://doi.org/10.4067/S0717-97072007000100002
F. Yakuphanoglu, “The current–voltage characteristics and inhomogeneous-barrier analysis of ddq/p-type Si/Al diode with interfacial layer”, Physica B: Condensed Matter, Vol. 389, No. 2, pp. 306-310, 2007 DOI: https://doi.org/10.1016/j.physb.2006.07.006
H. J. Im, Y. Ding, J. P. Pelz, W. J. Choyke, “Nanometer-Scale Test of the Tung Model of Schottky-Barrier Height Inhomogeneity”, Physical Review B, Vol. 64, Article ID 075310, 2001 DOI: https://doi.org/10.1103/PhysRevB.64.075310
R. F. Schmitsdorf, T. U. Kampen, W. Monch, “Explanation of the linear correlation between barrier heights and ideality factors of real metal-semiconductor contacts by laterally nonuniform Schottky barriers”, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, Vol. 15, No. 4, pp. 1221-1226, 1997 DOI: https://doi.org/10.1116/1.589442
J. P. Sullivan, R. T. Tung, M. R. Pinto, W. R. Graham, “Electron transport of inhomogeneous Schottky barriers: A numerical study”, Journal of Applied Physics, Vol. 70, No. 12, pp. 7403-7424, 1991 DOI: https://doi.org/10.1063/1.349737
R. T. Tung, “Electron transport at metal-semiconductor interfaces: General theory”, Physical Review B, Vol. 45, pp. 13509-13523, 1992 DOI: https://doi.org/10.1103/PhysRevB.45.13509
W. P. Leroy, K. Opsomer, S. Forment, R. L. V. Meirhaeghe, “The barrier height inhomogeneity in identically prepared Au/n-GaAs Schottky barrier diodes”, Solid-State Electronics, Vol. 49, No. 6, pp. 878-883, 2005 DOI: https://doi.org/10.1016/j.sse.2005.03.005
F. E. Cimilli, M. Saglam, A. Turut, “Determination of the lateral barrier height of inhomogeneous Au/n-type InP/In Schottky barrier diodes”, Semiconductor Science and Technology, Vol. 22, No. 8, pp. 851-854, 2007 DOI: https://doi.org/10.1088/0268-1242/22/8/003
M. B. Reddy, A. A. Kumar, V. Janardhanam, V. R. Reddy, P. N. Reddy, “Current–voltage–temperature (I–V–T) characteristics of Pd/Au Schottky contacts on n-InP (1 1 1)”, Current Applied Physics, Vol. 9, No. 5, pp. 972-977, 2009 DOI: https://doi.org/10.1016/j.cap.2008.10.001
F. A. Padovani, R. Stratton, “Field and thermionic-field emission in Schottky barriers”, Solid-State Electronics, Vol. 9, No. 7, pp. 695-707, 1996 DOI: https://doi.org/10.1016/0038-1101(66)90097-9
I. Dokme, S. Altindal, M. M. Bulbul, “The barrier height inhomogeneity in Al/p-Si Schottky barrier diodes with native insulator layer”, Applied Surface Science, Vol. 252, No. 22, pp. 7749-7754, 2006 DOI: https://doi.org/10.1016/j.apsusc.2005.09.046
S. Karadeniz, M. Sahim, N. Tougluoglu, H. Safak, “Temperature-dependent barrier characteristics of Ag/p-SnS Schottky barrier diodes”, Semiconductor Science and Technology, Vol. 19, No. 9, pp. 1098-1103, 2004 DOI: https://doi.org/10.1088/0268-1242/19/9/005
J. D. Harris, K. K. Banger, D. A. Scheiman, M. A. Smith, M. H. C. Jin, A. F. Hepp, “Characterization of CuInS2 films prepared by atmospheric pressure spray chemical vapor deposition”, Materials Science and Engineering B, Vol. 98, No. 2, pp. 150-155, 2003 DOI: https://doi.org/10.1016/S0921-5107(03)00041-2
M. C. Zouaghi, T. B. Nasrallah, S. Marsillac, J. C. Bernede, S. Belgacem, “Physico-chemical characterization of spray-deposited CuInS2 thin films”, Thin Solid Films, Vol. 382, No. 1-2, pp. 39-46, 2001 DOI: https://doi.org/10.1016/S0040-6090(00)01699-0
S. Marsillac, M. C. Zouaghi, J. C. Bernede, T. Ben Nasrallah, S. Belgacem, “Evolution of the properties of spray-deposited CuInS2 thin films with post-annealing treatment”, Solar Energy Materials and Solar Cells, Vol. 76, No. 2, pp. 125-134, 2001 DOI: https://doi.org/10.1016/S0927-0248(02)00210-6
S. Belgacem, M. Amlouk, R. Bennaceur, “Effet du rapport Cu/In sur la structure des couches minces de CuInS2 airless spray. Application : Conversion photovoltaique”, Revue de Physique Appliquee, Vol. 25, No. 12, pp. 1213-1223, 1990 (in French) DOI: https://doi.org/10.1051/rphysap:0199000250120121300
H. J. Norde, “A modified forward I‐V plot for Schottky diodes with high series resistance”, Journal of Applied Physics, Vol. 50, pp. 5052-5053, 1979 DOI: https://doi.org/10.1063/1.325607
S. K. Cheung, N. W. Cheung, “Extraction of Schottky diode parameters from forward current‐voltage characteristics”, Applied Physics Letters, Vol. 49, pp. 85-87, 1986 DOI: https://doi.org/10.1063/1.97359
V. Mikhelashvili, G. Eisenstein, V. Garber, S. Fainleib, G. Bahir, D. Ritter, M. Orenstein, A. Peer, “On the extraction of linear and nonlinear physical parameters in nonideal diodes”, Journal of Applied Physics, Vol. 85, pp. 6873-6883, 1999 DOI: https://doi.org/10.1063/1.370206
A. O. Conde, F. J. G. Sanchez, J. J. Liou, J. Andrian, R. J. Laurence, P. E. Schmidt, “A generalized model for a two-terminal device and its applications to parameter extraction”, Solid-State Electronics, Vol. 38, No. 1, pp. 265-266, 1995 DOI: https://doi.org/10.1016/0038-1101(94)00141-2
A. F. Hamida, Z. Ouennoughi, A. Hoffmann, R. Weiss, “Extraction of Schottky diode parameters including parallel conductance using a vertical optimization method”, Solid-State Electronics, Vol. 46, No. 5, pp. 615-619, 2002 DOI: https://doi.org/10.1016/S0038-1101(01)00337-9
T. C. Banwell, A. Jayakumar, “Exact analytical solution for current flow through diode with series resistance”, Electronics Letters, Vol. 36, No. 4, pp. 291-292, 2000 DOI: https://doi.org/10.1049/el:20000301
W. Jung, M. Guziewicz, “Schottky diode parameters extraction using lambert w function”, Materials Science and Engineering: B, Vol. 165, No. 1-2, pp. 57-59, 2009 DOI: https://doi.org/10.1016/j.mseb.2009.02.013
J. H. Werner, H. H. Guttler, “Barrier inhomogeneities at Schottky contacts”, Journal of Applied Physics, Vol. 69, No. 3, pp. 1522-1533, 1991 DOI: https://doi.org/10.1063/1.347243
Y. P. Song, R. L. Van Meirhaeghe, W. H. Laflere, F. Cardon, “On the Difference in Apparent Barrier Height as Obtained from Capacitance-voltage and Current-voltage- temperature Measurements on Al/p-InP Schottky Barriers”, Solid-State Electronics, Vol. 29, No. 6, pp. 633-638, 1986 DOI: https://doi.org/10.1016/0038-1101(86)90145-0
I. Dokme, “The analysis of I–V characteristics of Schottky diodes by thermionic emission with a Gaussian distribution of barrier height”, Microelectronics Reliability, Vol. 51, No. 2, pp. 360-364, 2011 DOI: https://doi.org/10.1016/j.microrel.2010.08.017
M. Oda, T. Miyaoka, S. Yamada, T. Tani, “Synthesis, Characterization and its Photoluminescence Properties of Group I-III-VI2CuInS2 nanocrystals”, Physics Procedia, Vol. 29, pp. 18-24, 2012 DOI: https://doi.org/10.1016/j.phpro.2012.03.685
K. Sarpatwari, O. O. Awadelkarim, M. W. Allen, S. M. Durbin, S. E. Mohney, “Extracting the Richardson constant: IrOx/n-ZnOIrOx/n-ZnO Schottky diodes”, Applied Physics Letters, Vol. 94, Article ID 242110, 2009 DOI: https://doi.org/10.1063/1.3156031
S. Hamrouni, M. F. Boujmil, K. B. Saad, “Electrical properties of the Al/CuInSe2 thin film Schottky junction”, Advances in Materials Physics and Chemistry, Vol. 4, pp. 224-235, 2014 DOI: https://doi.org/10.4236/ampc.2014.411026
C. Rincon, J. Gonzalez, “Acoustic deformation potentials in AIBIIICVI2 chalcopyrite semiconductors”, Physical Review B, Vol. 40, No. 12, pp. 8552-8554, 1989 DOI: https://doi.org/10.1103/PhysRevB.40.8552
S. Acar, S. Karadeniz, N. Tugluoglu, A. B. Selcuk, M. Kasap, “Gaussian distribution of inhomogeneous barrier height in Ag/p-Si (1 0 0) Schottky barrier diodes”, Applied Surface Science, Vol. 233, No. 1-4, pp. 373-381, 2004 DOI: https://doi.org/10.1016/j.apsusc.2004.04.011
B. Abay, G. Cankaya, H. S. Guder, H. Efeoglu, Y. K. Yogurtcu, “Barrier characteristics of Cd/p-GaTe Schottky diodes based on I–V–T measurements”, Semiconductor Science and Technology, Vol. 18, No. 2, pp. 75-81, 2003 DOI: https://doi.org/10.1088/0268-1242/18/2/302
J. Racko, D. Donoval, M. Barus, V. Nagl, A. Grmanova, “Revised theory of current transport through the Schottky structure”, Solid-State Electronics, Vol. 35, No. 7, pp. 913-919, 1992 DOI: https://doi.org/10.1016/0038-1101(92)90318-7
U. Parihar, J. Ray, C. J. Panchal, N. Padha, “Influence of temperature on Al/p-CuInAlSe2 thin-film Schottky diodes”, Applied Physisc A, Vol. 122, No. 6, Article ID 568, 2016 DOI: https://doi.org/10.1007/s00339-016-0105-9
Downloads
How to Cite
License
Copyright (c) 2019 Engineering, Technology & Applied Science Research
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after its publication in ETASR with an acknowledgement of its initial publication in this journal.