Hybrid PSO-Optimized ANFIS-Based Model to Improve Dynamic Voltage Stability

D. N. Truong, V. T. Bui

Abstract


The objective of this paper is to perform a hybrid design for an Adaptive Neuro-Fuzzy Inference System (ANFIS) optimized by Particle Swarm Optimization (PSO) to improve the dynamic voltage stability of a grid-connected wind power system. An onshore 99.2MW wind farm using Doubly Fed Induction Generator (DFIG) is studied. To compensate the reactive power absorbed from the power grid of the wind farm, a Static VAR Compensator (SVC) is proposed. To demonstrate the performance of the proposed hybrid PSO–ANFIS controller, simulations of the voltage response in time-domain are performed in Matlab to evaluate the effectiveness of the designed controller. From the results, it can be concluded that the proposed hybrid PSO-optimized ANFIS-based model can be applied to enhance the dynamic voltage stability of the studied grid-connected wind power system.


Keywords


adaptive neuro-fuzzy inference system; particle swarm optimization; static var compensator; voltage stability

Full Text:

PDF

References


R. Pena, J. C. Clare, G. M. Asher, “Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation”, Electric Power Applications, Vol. 143, No. 3, pp. 231-241, 1996

L. Wang, L. Y. Chen, “Reduction of power fluctuations of a large-scale grid-connected offshore wind farm using a variable frequency transformer”, Transactions on Sustainable Energy, Vol. 2, No. 3, pp. 226-234, 2011

Q. Xia, Z. Wang, F. Liu, Y. Li, Y. Peng, Z. Xu, “Study on Power Quality Issues of Wind Farm”, 36th Chinese Control Conference, Dalian, China, July 26-28, 2017

M. Latka, M. Nowak, “Analysis of Electrical Power Quality Parameters in the Power Grid with Attached Wind Farm”, Progress in Applied Electrical Engineering, Koscielisko, Poland, June 25-30, 2017

G. A. Ramos, M. A. Riosm, D. F. Gomez, H. Palacios, L. A. Posada, “Power Quality Study of a Large-Scale Wind Farm with Battery Energy Storage System”, Industry Applications Society Annual Meeting, Cincinnati, USA, October 1-5, 2017

A. Jain, P. P. Singh, S. N. Singh, “Control Strategies for Output Power Smoothening of DFIG with SVC in Wind Conversion System”, Region 10 Humanitarian Technology Conference, Agra, India, December 21-23, 2016

E. A. Awad, E. A. Badran, F. H. Youssef, “Mitigation of switching overvoltages in microgrids based on SVC and supercapacitor”, IET Generation, Transmission & Distribution, Vol. 12, No. 2, pp. 355–362, 2018

Y. Chang, Z. Xu, G. Chen, J. Xie, “A Novel SVC Supplementary Controller Based on Wide Area Signals”, Power Engineering Society General Meeting, Montreal, Canada, June 18–22, 2006

A. Jalilvand, M. D. Keshavarzi, “Adaptive SVC Damping Controller Design, Using Residue Method in a Multi-Machine System”, 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Pattaya, Thailand, May 6–9, 2009

L. O. Mak, Y. X. Ni, C. M. Shen, “STATCOM with fuzzy controllers for interconnected power systems”, Electric Power Systems Research, Vol. 55, No. 2, pp. 87–95, 2000

I. Mansour, D. O. Abdeslam, P. Wira, J. Merckle, “Fuzzy Logic Control of an SVC to Improve the Transient Stability of AC Power Systems”, 35th Annual Conference of IEEE Industrial Electronics, Porto, Portugal, November 3–5, 2009

J. S. R. Jang, “ANFIS: Adaptive-network-based fuzzy inference system”, Transactions on Systems, Man, and Cybernetics, Vol. 23, No. 3, pp. 665–685, 1993

A. Albakkar, O. P. Malik, “Adaptive Neuro-Fuzzy FACTS Controller for Transient Stability Enhancement”, 16th National Power System Conference, Hyderabad, India, December 15-17, 2010

C. G. Martos, J. Rodriguez, M. J. Sanchez, “Mixed models for short-run forecasting of electricity prices: Application for the Spanish market”, Transactions on Power Systems, Vol. 22, No. 2, pp. 544–552, 2007

H. M. I. Pousinho, V. M. F. Mendes, J. P. S. Catalao, “A hybrid PSO-ANFIS approach for short-term wind power prediction in Portugal”, Energy Conversion and Management, Vol. 52, No. 1, pp. 397-402, 2011

The WindPower, 1.6xle, available at: https://www.thewindpower.net/

turbine_en_670_ge-energy_1.6xle.php, 2019

J. P. S. Catalao, H. M. I. Pousinho, V. M. F. Mendes, “Short-term electricity prices forecasting in a competitive market by a hybrid intelligent approach”, Energy Conversion and Management, Vol. 52, No. 2, pp. 1061–1065, 2011

D. N. Truong, “STATCOM Based Fuzzy Logic Damping Controller For Improving Dynamic Stability Of A Grid Connected Wind Power System”, International Conference On System Science And Engineering, Puli, Taiwan, July 7-9, 2016

V. T. Bui, D. N. Truong, “Voltage Stability Enhancement of Bac Lieu Wind Power by ANFIS Controlled Static Var Compensator”, 4th International Conference on Green Technology and Sustainable Development, Ho Chi Minh City, Vietnam, November 23-24, 2018

M. A. Shoorehdeli, M. Teshnehlab, A. K. Sedigh, M. A. Khanesar, “Identification using ANFIS with intelligent hybrid stable learning algorithm approaches and stability analysis of training methods”, Applied Soft Computing, Vol. 9, No. 2, pp. 833–850, 2009

S. P. Singh, S. C. Sharma, “A novel energy efficient clustering algorithm for wireless sensor networks”, Engineering, Technology & Applied Science Research, Vol. 7, No. 4, pp. 1775-1780, 2017




eISSN: 1792-8036     pISSN: 2241-4487