Surface Discharges and Flashover Voltages in Nanocomposite XLPE Samples

C. Papadakis, Y. Yin, M. Danikas, C. Charalambous

Abstract


DC cable insulation is a field of intensive research activity. Special attention is being given to polymer nanocomposites, as promising insulation for such cables. Relatively little is known regarding surface discharges and flashover voltages for the aforementioned materials. In this paper, a comparison is made between samples of cross-linked polyethylene insulation with added MgO nanofillers and samples of pure polyethylene w.r.t. the behavior of surface discharges and flashover voltages in arrangements of water droplets of various conductivities on the said polymeric surfaces under the influence of uniform electric fields. Experimental evidence indicates that the flashover voltages of XLPE with MgO nanofillers are higher that the ones obtained with pure PE.


Keywords


discharge; flashover; cable; XPLE; nanocomposite

Full Text:

PDF

References


C. W. Reed, “An assessment of material selection for high voltage DC extruded polymer cables”, IEEE Electrical Insulation Magazine, Vol. 33, No. 4, pp. 22-26, 2017

T. Andritsch, A. Vaughan, G. C. Stevens, “Novel insulation materials for high voltage cable systems”, IEEE Electrical Insulation Magazine, Vol. 33, No.4, pp. 27-33, 2017

G. Melissinos, M. Danikas, “On Polymers Nanocomposites: Electrical Treeing, Breakdown models and Related Simulations”, Engineering, Technology & Applied Science Research, Vol. 8, No. 2, pp. 2627-2632, 2018

S. C. Kechagia, M. G. Danikas, R. Sarathi, “Water droplets and breakdown phenomena on polymer nanocomposite surfaces under the influence of uniform electric fields”, Malaysian Polymer Journal, Vol. 8, No. 2, pp. 41-47, 2013

F. Obenaus, “Fremdschichtueberschlag und Kriechweglaenge”, Elektrotechnik, Vol. 4, pp. 135-137, 1958

M. Kozako, R. Kido, N. Fuse, Y. Ohki, T. Okamoto, “Difference in surface degradation due to partial discharges between polyamide nanocomposite and microcomposite”, IEEE 2004 Annual Report of Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), pp. 398-401, 2004

M. Kozako, R. Kido, T. Imai, T. Ozaki, T. Shmizu, T. Tanaka, “Surface roughness change of epoxy/TiO2 nanocomposites due to partial discharges”, International Symposium on Electrical Insulating Materials, Japan, pp. 661-664, 2005

C. Charalambous, M. G. Danikas, Y. Yin, N. Vordos, J. W. Nolan, A. Mitropoulos, “Study of the behavior of water droplets under the influence of a uniform electric field on conventional polyethylene and on crosslinked polyethylene (XLPE) with MgO nanoparticles samples”, Engineering, Technology & Applied Science Research, Vol. 7, No. 1, pp. 1323-1328, 2017

P. Prabhu, M. J. Thomas, “Influence of nanofillers on the surface electrical discharge resistance of epoxy insulation in HV apparatus”, International Journal on Emerging Electrical Power Systems, Vol. 12, No. 4, DOI: 10.2202/1553-779X.2706, 2011

R. Sarathi, A. K. Sahoo, Y. Chen, T. Tanaka, “Underrstanding surface discharge activity with epoxy silicon carbide nanocomposites”, Polymer Engineering & Science, Vol. 57, No. 12, pp. 1349-1355, 2017

A. B. Poda, R. Dhara, Md. Afzalur Rab, P. Basappa, “Evaluation of aging in nanofilled polypropylene by surface discharges”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 23, No. 1, pp. 275-287, 2016

P. A. Sharad, K. S. Kumar, “Application of surface modified XLPE nanocomposites for electrical insulation – partial discharge and morphological study”, Nanocomposites, Vol. 3, No. 1, pp. 30-41, 2017

Y. Z. Lv, Y. Zhou, C. R. Li, K. B. Ma, Q. Wang, W. Wang, S. N. Zhang, Z. Y. Zin, “Nanoparticle effects on creeping flashover characteristics of oil/pressboard interface”, IEEE Transactions on Dielectrics and Electrical Insul.ation, Vol. 21, No. 2, pp. 556-562, 2014




eISSN: 1792-8036     pISSN: 2241-4487