Analysis of Retransmission Policies for Parallel Data Transmission

I. A. Halepoto, I. H. Sadhayo, M. S. Memon, A. Manzoor, S. Bhatti

Abstract


Stream control transmission protocol (SCTP) is a transport layer protocol, which is efficient, reliable, and connection-oriented as compared to transmission control protocol (TCP) and user datagram protocol (UDP). Additionally, SCTP has more innovative features like multihoming, multistreaming and unordered delivery. With multihoming, SCTP establishes multiple paths between a sender and receiver. However, it only uses the primary path for data transmission and the secondary path (or paths) for fault tolerance. Concurrent multipath transfer extension of SCTP (CMT-SCTP) allows a sender to transmit data in parallel over multiple paths, which increases the overall transmission throughput. Parallel data transmission is beneficial for higher data rates. Parallel transmission or connection is also good in services such as video streaming where if one connection is occupied with errors the transmission continues on alternate links. With parallel transmission, the unordered data packets arrival is very common at receiver. The receiver has to wait until the missing data packets arrive, causing performance degradation while using CMT-SCTP. In order to reduce the transmission delay at the receiver, CMT-SCTP uses intelligent retransmission polices to immediately retransmit the missing packets. The retransmission policies used by CMT-SCTP are RTX-SSTHRESH, RTX-LOSSRATE and RTX-CWND. The main objective of this paper is the performance analysis of the retransmission policies. This paper evaluates RTX-SSTHRESH, RTX-LOSSRATE and RTX-CWND. Simulations are performed on the Network Simulator 2. In the simulations with various scenarios and parameters, it is observed that the RTX-LOSSRATE is a suitable policy.


Keywords


CMT; CMT-SCTP; retransmission policies; SCTP; parallel transmission

Full Text:

PDF

References


J. R. Iyengar, P. D. Amer, R. Stewart, “Retransmission policies for concurrent multipath transfer using SCTP multihoming”, 12th IEEE International Conference on Networks, Singapore, Vol. 2, pp. 713-719, IEEE, 2004

J. R. Iyengar, P. D. Amer, R. Stewart, “Receive buffer blocking in concurrent multipath transfer”, In IEEE Global Telecommunications Conference (GLOBECOM'05), St. Louis, USA, Vol. 1, p. 6, IEEE, 2005

A. L. Caro, P. D. Amer, R. R. Stewart, “Retransmission schemes for end-to-end failover with transport layer multihoming”, In IEEE Global Telecommunications Conference, GLOBECOM'04, Vol. 3, pp. 1341- 1347, IEEE, 2004

J. Liu, H. Zou, J. Dou, Y. Gao, “Reducing receive buffer blocking in concurrent multipath transfer”, In 4th IEEE International Conference on Circuits and Systems for Communications, Shanghai, China, pp. 367-371, IEEE, 2008

P. Natarajan, N. Ekiz, P. D. Amer, R. Stewart, “Concurrent multipath transfer during path failure”, Computer Communications, Vol. 32, No. 15, pp. 1577-1587, 2009

I. A. Halepoto, F. C. Lau, Z. Niu, Z, “Concurrent multipath transfer under delay-based dissimilarity using SCTP”, In IEEE Second International Conference on Computing Technology and Information Management (ICCTIM), pp. 180-185, IEEE, 2015

I. A. Halepoto, Scheduling and flow control in CMT-SCTP, HKU Theses Online (HKUTO), 2014

P. Natarajan, J. R. Iyengar, P. D. Amer, R. Stewart, “Concurrent multipath transfer using transport layer multihoming: Performance under network failures”, in Military Communications Conference, MILCOM 2006, Washington, DC, USA, pp. 1-7, IEEE, 2006

J. R. Iyengar, P. D. Amer, R. Stewart, “Concurrent multipath transfer using transport layer multihoming: performance under varying bandwidth proportions”, in IEEE Military Communications Conference, MILCOM 2004, Monterey, USA, Vol. 1, pp. 238-244, IEEE, 2004

H. Shen, C. Wang, W. Ma, D. Zhang, “Research of the retransmission policy based on compound parameters in SCTP-CMT”, in 2nd International Conference on Information Technology and Electronic Commerce (ICITEC), Dalian, China, pp. 25-28, IEEE, 2014

A. L. Caro Jr, P. D. Amer, R. R. Stewart, “Retransmission policies for multihomed transport protocols”, Computer Communications, Vol. 29, No.10, pp. 1798-1810, 2006

T. Yang, L. Pan, L. Jian, H. Hongcheng, W. Jun, “Reducing receive buffer blocking in CMT based on SCTP using retransmission policy”, in IEEE 3rd International Conference on Communication Software and Networks (ICCSN), Xi'an, China, pp. 122-125, IEEE, 2011

Y. Cao, C. Xu, J. Guan, “A record-based retransmission policy on SCTP's Concurrent Multipath Transfer”, in 2011 International Conference on Advanced Intelligence and Awareness Internet (AIAI 2011), Shenzhen, China, pp. 67-71, IEEE, 2011

F. Siddiqui, S. Zeadally, “SCTP multihoming support for handoffs across heterogeneous networks”, in: 4th Annual Communication Networks and Services Research Conference (CNSR 2006), Moncton, NB, Canada, IEEE, 2006

A. L. Caro Jr, J. R. Iyengar, P. D. Amer, G. J. Heinz, R. R. Stewart, “Using SCTP multihoming for fault tolerance and load balancing”, ACM SIGCOMM Computer Communication Review, Vol. 32, No.3, p.23, 2002

A. L. Caro Jr, P. D. Amer, J. R. Iyengar, R. R. Stewart, “Retransmission policies with transport layer multihoming”, in: 11th IEEE International Conference on Networks, Sydney, Australia, pp. 255-260, IEEE, 2003

I. A. Halepoto, F. C. M. Lau, Z. Niu, “Scheduling over dissimilar paths using CMT-SCTP”, in: Seventh International Conference on Ubiquitous and Future Networks (ICUFN), Sapporo, Japan, pp. 535-540 IEEE, 2015

N. H. Bhangwar, I. A. Halepoto, S. Khokhar, A. A. Laghari, “On routing protocols for high performance”, Studies in Informatics and Control, Vol. 26, No. 4, pp. 441-448, 2017




eISSN: 1792-8036     pISSN: 2241-4487