A Dilated Trigonometrically Equipped Algorithm to Compute Periodic Vibrations through Block Milne’s Implementation

J. G. Oghonyon, S. A. Bishop, K. S. Eke

Abstract


This paper intends to investigate the use of a dilated trigonometrically equipped algorithm to compute periodic vibrations in block Milne's implementation. The block-Milne implementation is established by developing a block variable-step-size predictor-corrector method of Adam’s family using a dilated trigonometrically equipped algorithm. The execution is carried out using a block variable-step-size predictor-corrector method. This system has significant advantages that include the varying step-size and finding out the convergence-criteria and error control. Convergence-criteria and operational mode are discussed to showcase the accuracy and effectuality of the proposed approach.


Keywords


dilated trigonometrically equipped algorithm; block- Milne’s device; convergence-criteria; max errors; principal-local- truncation-error

Full Text:

PDF

References


R. D’Ambrosio, E. Esposito, B. Paternoster, “Exponentially fitted two-step hybrid methods for y^''=f(x,y)”, Journal of Computational and Applied Mathematics, Vol. 235, No. 16, pp. 4888-4897, 2011

H. Ramos, J. Vigo-Aguiar, “On the frequency choice in trigonometrically fitted methods”, Applied Mathematics Letters, Vol. 23, No. 11, pp. 1378-1381, 2010

U. M. Ascher, L. R. Petzold, Computer Methods for Ordinary Differential Equations And Differential Algebraic Equations, SIAM, Philadelphia, 1998

J. R. Dormand, Numerical Methods for Differential Equations, CRC Press, 1996

J. D. Faires, R. L. Burden, Initial-value problems for ODEs, Dublin City University, 2012

J. D. Lambert, Computational Methods in mOrdinary Differential Equations, John Wiley and Sons, 1973

E. Hairer, G. Wanner, Solving Ordinary Differential Equations II, Springer, 1996

M. K. Jain, S. R. K. Iyengar, R. K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International, 2003

L. Xie, H. Tian, “Continuous parallel block methods and their applications”, Applied Mathematics and Computation, Vol. 241, pp. 356- 370, 2014

F. F. Ngwane, S. N. Jator, “Block hybrid method using trigonometric basis for initial value problems with oscillating solutions”, Numerical Algorithms, Vol. 63, No. 4, pp. 713-725, 2013

F. F. Ngwane, S. N. Jator, “Solving oscillatory problems using a block hybrid trigonometrically fitted method with two off-step points. Electronic Journal of Differential Equations”, 9th Conference on Differential Equations and Computational Simulations, Vol. 20, pp. 119-132, 2013

F. F. Ngwane, S. N. Jator, “Trigonometrically-fitted second derivative method for oscillatory problems”, Springer Plus, Vol. 3, No. 1, 2014

F. F. Ngwane, S. N. Jator, “Solving the telegraph and oscillatory differential equations by a block hybrid trigonometrically fitted algorithm”, International Journal of Differential Equations, Vol. 2015, Article ID 347864, 2015

F. F. Ngwane, S. N. Jator, “A trigonometrically fitted block method for solving oscillatory second-order initial value problems and Hamiltonian systems”, International Journal of Differential Equations, Vol. 2017, Article ID 9293530, 2017

G. Psihoyios, T. E. Simos, “Trigonometrically fitted predictor-corrector methods for IVPs with oscillatory solutions”, Journal of Computational and Applied Mathematics, Vol. 158, No. 1, pp. 135-144, 2003

G. Psihoyios, T. E. Simos, “A fourth algebraic order trigonometrically fitted predictor-corrector scheme for IVPs with oscillating solutions”, Journal of Computational and Applied Mathematics, Vol. 175, No. 1, pp. 137-147, 2005

G. Psihoyios, T. E. Simos, “A new trigonometrically-fitted sixth algebraic order P-C algorithm for the numerical solution of the radial Schrodinger equation”, Mathematical and Computer Modelling, Vol. 42, pp. 887-902, 2005

T. E. Simos, “Dissipative Trigonometrically-fitted methods for linear second-order IVPs with oscillatory solution”, Applied Mathematics Letters, Vol. 17, No. 5, pp. 601-607, 2004

G. O. Adejumo, T. O. Abioye, M. Tar, “Adoption of computer assisted language learning software among Nigerian secondary school students”, Covenant International Journal of Psychology, Vol. 1, No. 2, pp. 22-30, 2016

A. O. Akinfenwa, S. N. Jator, N. M. Yao, “Continuous block backward differentiation formula for solving stiff ordinary differential equations”, Computers and Mathematics with Applications, Vol. 65, No. 7, pp. 996-1005, 2013

T. A. Anake, D. O. Awoyemi, A. O. Adesanya, “One-step implicit hybrid block method for the direct solution of general second order ODEs”, IAENG International Journal of Applied Mathematics, Vol. 42, No. 4, pp. 224-228, 2012

T. A. Anake, L. O. Adoghe, “A four point integration method for the solutions of IVP in ODE”, Australian Journal of Basic and Applied Sciences, Vol. 7, No. 10, pp. 467-473, 2013

J. D. Lambert, Numerical Methods for Ordinary Differential Systems: The Initial Value Problem, John Wiley and Sons, 1991

J. G. Oghonyon, S. A. Okunuga, S. A. Iyase, “Milne’s implementation on block predictor-corrector methods”, Journal of Applied Sciences, Vol. 16, No. 5, pp. 236-241, 2016

J. G. Oghonyon, S. A. Okunuga, S. A. Bishop, “A Variable-step-size block predictor-corrector method for ODEs”, Asian Journal of Applied Sciences, Vol. 10, pp. 96-101, 2017

Z. B. Ibrahim, K. I. Othman, M. Suleiman, “Variable step block backward differentiation formula for solving first-order stiff ODEs”, Proceedings of the World Congress on Engineering, London, U.K, Vol. 2, pp. 2-6, July 2-4, 2007

Z. B. Ibrahim, K. I. Othman, M. Suleiman, “Implicit r-point block backward differentiation formula for solving first-order stiff ODEs”, Applied Mathematics and Computation, Vol. 186, No. 1, pp. 558-565, 2007

Z. A. Majid, M. Suleiman, “Parallel direct integration variable step block method for solving large system of higher order ODEs”, International Journal of Mathematical and Computational Sciences, Vol. 2, No. 4, pp. 269-273, 2008

S. Mehrkanoon, Z. A. Majid, M. Suleiman, “A variable step implicit block multistep method for solving first-order ODEs”, Journal of Computational and Applied Mathematics, Vol. 233, No. 9, pp. 2387-2394, 2010

Z. A. Majid, M. B. Suleiman, “Implementation of Four-Point Fully Implicit Block Method for Solving Ordinary Differential Equations”, Applied Mathematics and Computation, Vol. 184, No. 2, pp. 514-522, 2007




eISSN: 1792-8036     pISSN: 2241-4487