Alkali-Aggregate Reaction: A study of the influence of the petrographic characteristics of volcanic rocks


  • F. Tiecher Polytechnic School of Civil Engineering, IMED Passo Fundo, Brazil
  • M. B. Gomes Department of Geology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
  • D. C. C. Dal Molin Department of Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Volume: 8 | Issue: 1 | Pages: 2399-2404 | February 2018 |


When the rock involved in the alkali-aggregate reaction (AAR) is volcanic, the matter present in the interstices of the grains, called mesostasis is considered responsible for the expansions. Mesostasis is a residue which consists of mineral phases rich in silica and alkalis (K and Na) and in optical microscopy looks like amorphous matter. By means of scanning electron microscopy (SEM) and with the aid of energy dispersive spectroscopy (EDS), the presence of well-crystallized mineral phases in mesostasis can be observed. The objective of this study was to evaluate the amount, the chemical composition and the degree of crystallinity of mesostasis on the reactive potentiality of volcanic rocks.


alkali-aggregate reaction, volcanic rocks, basalt, rhyolite


Download data is not yet available.


M. E. B. Gomes, Mecanismes de refroidissement, structurat et processus post-magmatiques des basaltes du bassin du Parana – region de Frederico Westphalen (RS) – Bresil, PhD Thesis, Universidade Federal do Rio Grande do Sul, 1996

F. Tiecher, Reacao alcali-agregado: avaliacao do comportamento de agregados do sul do Brasil quando se altera o cimento utilizado, MSc. Report, Universidade Federal do Rio Grande do Sul, 2006

L. Valduga, Influence of ASTM C 1260 test conditions to verify alkali-aggregate reaction, PhD Thesis, Universidade Federal do Rio Grande do Sul, 2007

L. Valduga, D. C. C. Dal Molin, V. A. Paulon, “Basalts potential reactivity survey in Brazil”, 2th Simposio Sobre Reacao Alcali-Agregado Em Estruturas De Concreto, 2006

A. A. Silveira, Contribution to the Study of Rice Husk Ash Admixtures on Concretes Submitted to Alkali-Agreggate Reactions, PhD Thesis, UFRGS, 2007

D. B. Alves, “Desenvolvimento da metodologia de preparacao de amostras para analise difratometrica de argilominerais no centro de pesquisas da Petrobras”, Boletim de Geociencias da Petrobras, Rio de Janeiro: Petrobras, Vol. 1, No. 2, pp. 157-175, 1987

Associacao Brasileira de Normas Tecnicas, NBR 15577-4: Agregados - Reatividade alcali-agregado - Parte 4: Determinacao da expansao em barras de argamassa pelo metodo acelerado, 2008

Annual Booking of American Society for Testing and Materials, ASTM C 1260-01: Standard test method for potential alkali reactivity of aggregates (mortar-bar method), Annual Book of ASTM Standards, 2001

Y. Wakizaka, “Alkali-silica reactivity of Japanese rocks”, Developments in Geotechnical Engineering, Vol. 84, pp. 293-303, 2000 DOI:

J. T. Kloprogge, S. Komarneni, J. E. Amonette, “Synthesis of smectite clay minerals: a critical review”, Clays and Clay Minerals, Vol. 47, No. 5, pp. 529-554, 1999 DOI:

A. R. V. Silva, H. C. Ferreira, “Esmectitas organofilicas: conceitos, estruturas, propriedades, sintese, usos industriais e produtores/fornecedores nacionais e internacionais”, Revista Eletronica de Materiais e Processos, Vol. 3, No. 3, pp. 1-11, 2008

L. S. Marques, M. Ernesto, “Magmatismo toleitico da bacia do Parana”, Geologia do Continente Sul-Americano: evolucao da obra de Fernanado Flavio Marques de Almeida, pp. 245-263, 2004

A. J. R. Nardy, F. B. Machado, M. A. F. de Oliveira, “As rochas vulcanicas mesozoicas acidas da Bacia do Parana: litoestratigrafia e consideracoes geoquimico-estatigraficas”, Revista Brasileira de Geociencias, Vol. 38, No. 1, pp. 178-195, 2008 DOI:

M. Korkanc, A. Trugrul, “Evaluation of selected basalts form the point of alkali-silica reactivity”, Cement and Concrete Research, Vol. 35, No. 3, pp. 505-512, 2005 DOI:

P. Krivenko, R. Drochytka, A. Gelevera, E. Kavalerova, “Mechanism of preventing the alkali-aggregate reaction in alkali-activated cement concretes”, Cement and Concrete Composites, Vol. 45, pp. 157–165, 2014 DOI:

M. S. Islam, M. S. Alam, N. Ghafoori, R. Sadiq, “Role solution concentration, cement alkali and test duration on expansion of accelerated mortar bar test (AMBT)”, Materials and Structures, Vol. 49, No. 5, pp. 1955-1965, 2015 DOI:

S. Sujjavanich, T. Meesak, D. Chayasuwan, “Effect of clay brick powder on ASR expansion control of rhyolite mortar bar”, Advanced Materials Research, Vol. 931-932, pp. 441-445, 2014 DOI:

A. Leemann, T. Katayama, I. Fernandes, M. A. R. Broekmans, “Types of alkali-aggregate reactions and products formed”, Construction Materials, Vol. 169, No. 3, pp. 128-135, 2016 DOI:

C. Igarashi, I. Maruyama, Y. Nishioka, H. Yoshida, “Influence of mineral composition of siliceous rock on its volume change”, Construction and Building Materials, Vol. 94, pp. 701-709, 2015 DOI:

H. Chamley, Clay Sedimentology, Springer-Verlang, 1989 DOI:

J. M. Ponce, O. R. Batic, “Different manifestation of the alkali-silica reaction in concrete according to the reaction kinetics of the reactive aggregate”, Cement and Concrete Research, Vol. 36, No. 6, pp. 1148-1156, 2006 DOI:


How to Cite

F. Tiecher, M. B. Gomes, and D. C. C. Dal Molin, “Alkali-Aggregate Reaction: A study of the influence of the petrographic characteristics of volcanic rocks”, Eng. Technol. Appl. Sci. Res., vol. 8, no. 1, pp. 2399–2404, Feb. 2018.


Abstract Views: 653
PDF Downloads: 323

Metrics Information
Bookmark and Share