Using Fast Hot Shock Wave Consolidation Technology to Produce Superconducting MgB2
Abstract
The original hot shock wave assisted consolidation method combining high temperature was applied with the two-stage explosive process without any further sintering to produce superconducting materials with high density and integrity. The consolidation of MgB2 billets was performed at temperatures above the Mg melting point and up to 1000oC in partially liquid condition of Mg-2B blend powders. The influence of the type of boron (B) isotope in the composition on critical temperature and superconductive properties was evaluated. An example of a hybrid Cu-MgB2–Cu superconducting tube is demonstrated and conclusions are discussed.
Keywords:
superconductivity, MgB2, fast fabrication, explosive consolidation, hybrid energy lines, magnetization, isotopic effectDownloads
References
J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, “Superconductivity at 39 K in magnesium diboride”, Nature, Vol. 410, No. 6824, pp. 63-64, 2001 DOI: https://doi.org/10.1038/35065039
C. H. Jiang, T. Nakane, H. Hatakeyama, H. Kumakura, “Enhanced Jc property in nano-SiC doped thin MgB2/Fe wires by a modified in situ PIT process”, Physica C, Vol. 422, No. 3-4, pp. 127-131, 2005 DOI: https://doi.org/10.1016/j.physc.2005.03.014
V. I. Mali, V. A. Neronov, V. P. Perminov, M. A. Korchagin, T. S. Teslenko, “Explosive incited magnesium diboride synthesis”, Chemistry for Sustainable Development, Vol. 13, No. 3, pp. 449–451, 2005
N. Orlinska, A. Zaleski, Z. Wokulski, G. Dercz, “Characterization of heat treatment MgB2 rods obtained by PIT technique with explosive consolidation method”, Archives of Metallurgy and Materials, Vol. 33, No. 3, pp. 927-932, 2008
M. J. Holcomb, “Supercurrents in magnesium diboride/metal composite wire”, Physica C: Superconductivity and its Applications, Vol. 423, No. 3-4, pp. 103-108, 2005 DOI: https://doi.org/10.1016/j.physc.2005.04.007
T. A. Priknha, W. Gawalek, Ya. M. Savchuk, V. E. Moshchil, N. V. Sergienko, A. B. Surzhenko, M. Wendt, S. N. Dub, V. S. Melnikov, Ch. Schmidt, O. A. Nagorny, “High-pressure synthesis of a bulk superconductive MgB2-based material”, Physica C: Superconductivity, Vol. 386, pp. 565-568, 2003 DOI: https://doi.org/10.1016/S0921-4534(02)02178-0
A. G. Mamalis, I. N. Vottea, D. E. Manolakos, “Explosive compaction/cladding of metal sheathed/superconducting grooved plates: FE modeling and validation”, Physica C: Superconductivity, Vol. 410, pp. 881-883, 2004 DOI: https://doi.org/10.1016/j.physc.2004.03.230
A. P. Shapovalov, “High pressure syntheses of nanostructured superconducting materials based on magnesium diboride”, High Pressure Physics and Engineering, Vol, 23, No. 4, pp. 35-45, 2013
G. Маmniashvili, D. Daraselia, D. Japaridze, A. Peikrishvili, B. Godibadze, “Liquid-phase shock-assisted consolidation of superconducting MgB2 composites”, Journal of Superconductivity and Novel Magnetism, Vol. 28, No. 7, pp. 1926-1929, 2015 DOI: https://doi.org/10.1007/s10948-015-3007-8
D. Daraselia, D. Japaridze, A. Jibuti, A. Shengelaya, K. A. Muller, “Rapid solid-state synthesis of oxides by means of irradiation with light”, Journal of Superconductivity and Novel Magnetism, Vol. 26, No. 10, pp. 2987-2991, 2013 DOI: https://doi.org/10.1007/s10948-013-2307-0
V. V. Kostyuk, I. V. Antyukhov, E. V. Blagov, V. S. Vysotsky, B. I. Katorgin, A. A. Nosov, S. S. Fetisov, V. P. Firsov, “Experimental hybrid power transmission line with liquid hydrogen and MgB2 based superconducting cable”, Technical Physics Letters, Vol. 38, No. 3, pp. 279-282, 2012 DOI: https://doi.org/10.1134/S106378501203025X
T. Gegechkori, B. Godibadze, V. Peikrishvili, G. Mamniashvili, A. Peikrishvili, “One stage production of superconducting MgB2 and hybrid power transmission lines by the hot shock wave consolidation technology, International Journal of Applied Engineering Research, Vol. 12, No. 14, pp. 4729-4734, 2017
Downloads
How to Cite
License
Authors who publish with this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after its publication in ETASR with an acknowledgement of its initial publication in this journal.