The Effect of Zinc Oxide Nanoparticles on Safflower Plant Growth and Physiology


  • Z. Hafizi Department of Biology, Paymenoor University, Tehran, Iran
  • N. Nasr Department of Biology, Paymenoor University, Tehran, Iran
Volume: 8 | Issue: 1 | Pages: 2508-2513 | February 2018 |


In this paper, a study of the effect of ZnO nanoparticles on safflower growth and physiology was performed. Each of these elements plays a particular role in the plant life, the presence of these elements is necessary for plant’s life cycle and growth. Zinc deficiency causes the biggest problems in safflower’s production. Considering the importance of nanoparticles in today's world, this research investigated the effect of Zinc oxide nanoparticles on the concentration of guaiacol peroxidase, polypeptide oxidase, dehydrogenase and malondialdehyde in four plant sample groups in greenhouse and laboratory conditions. Results of showed that malondialdehyde enzyme increased with different treatments of various concentrations of Zinc oxide. The enzyme guaiacol oxidase increased at concentrations of 100 mg/L and polyphenol oxide at concentrations of 10 and 500 mg/L and dehydrogenase in 1000 mg/L and decreased in other treatments. In addition to showing the effect of nanoparticles in plants, these findings determine the beneficial concentrations of nanoparticles that have a positive effect on the level of enzymes in plants.


nanoparticles, malondialdehyde, guaiac peroxidase, polyphenol oxidase, dehydrogenase


Download data is not yet available.


Y. N. Chang, M. Zhang, L. Xia, J. Zhang, G. Xing, “The toxic effects and mechanisms of CuO and ZnO nanoparticles”, Materials, Vol. 5, No. 12, pp. 2850-2871, 2012 DOI:

G. de la Rosa, M. L. Lopez-Moreno, D. de Haro, C. E. Botez, J. R. Peralta-Videa, J. L. Gardea-Torresdey, “Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies”, Pure and Applied Chemistry, Vol. 85, No. 12, pp. 2161-2174, 2013 DOI:

R. Nair, S. H. Varghese, B. G. Nair, T. Maekawa, Y. Yoshida, D. S. Kumar, “Nanoparticulate material delivery to plants”, Plant science, Vol. 179, No. 3, pp. 154-163, 2010 DOI:

K. S. Soppimath, T. M. Aminabhavi, A. R. Kulkarni, W. E. Rudzinski, “Biodegradable polymeric nanoparticles as drug delivery devices”, Journal of controlled release, Vol. 70, No. 1-2, pp. 1-20, 2001 DOI:

C. I. Moraru, C. P. Panchapakesan, Q. Huang, P. Takhistov, L. Sean, J. L. Kokini, “Nanotechnology: a new frontier in food science”, Food Technology, Vol. 57, No. 12, pp. 24-29, 2003

A. Zargari, Medicinal Plants, Publishing and Printing University of Tehran, 1989

M. Beygom Faghir, The Common families of Flowering Plants, Gilan University Press, 2001

M. H. Chao, R. H. Tae, “Purification and characterization of precarthamin decarboxylase from the yellow of Carthamus tinctorius L”, Archives of Biochemistry and Biophysics, Vol. 382, No. 4, pp. 238-244, 2000 DOI:

M. Wink, Functions of plant secondary metabolites and their exploitation in biotechnology (Vol. 3), Taylor & Francis, 1999

N. Misra, A. K. Gupta, “Effect of salinity and different nitrogen sources on the activity of antioxidant enzymes and indole alkaloid content in Catharanthus roseus seedlings”, Journal of plant physiology, Vol. 163, No. 1, pp. 11-18, 2006 DOI:

J. V. Shanks, R. Bhadra, J. Morgan, S. Rijhwani, S. Vani, “Quantification of metabolites in the indole alkaloid pathways of Catharanthus roseus: implications for metabolic engineering”, Biotechnology and bioengineering, Vol. 58, No. 3, pp. 333-338, 1998 DOI:<333::AID-BIT35>3.0.CO;2-A

T. J. Huxter, T. A. Thorpe, D. M. Reid, “Shoot initiation in light‐and dark‐grown tobacco callus: the role of ethylene”, Physiologia plantarum, Vol. 53, No. 3, pp. 319-326, 1981 DOI:

S. Hisiger, M. Jolicoeur, “Analysis of Catharanthus roseus alkaloids by HPLC”, Phytochemistry Reviews, Vol. 6, No. 3, pp. 207-234, 2007 DOI:

M. I. Aslam, K. Taylor, J. H. Pringle, J. S. Jameson, “MicroRNAs are novel biomarkers of colorectal cancer”, British Journal of Surgery, Vol. 96, No. 7, pp. 702-710, 2009 DOI:

M. I. Aslam, A. Kelkar, D. Sharpe, J. S. Jameson, “Ten years experience of managing the primary tumours in patients with stage IV colorectal cancers”, International Journal of Surgery, Vol. 8, No. 4, pp. 305-313, 2010 DOI:

P. Barak, P. A. Helmke, “The chemistry of Zinc”, in: Zinc in soils and plants, Springer Netherlands, 1993 DOI:

D. S. Auld, “Zinc coordination sphere in biochemical Zinc sites”, Biometals, Vol. 14, No. 3, pp. 271-313, 2001 DOI:

W. L. Lindsay, Chemical equilibria in soils, John Wiley and Sons Ltd, 1979

B. J. Alloway, Heavy metals in soils. 2nd. Edition, Blackie academic& Professional, New York, 1995 DOI:

S. A. Barber, Soil nutrient bioavailability: a mechanistic approach, John Wiley & Sons, 1995

A. J. Friedland, “The movement of metals through soils and ecosystems”, in: Heavy metal tolerance in plants: evolutionary aspects, CRC Press, 1990

R. L. Chaney, “Zinc phytotoxicity”, Developments in Plant and Soil Sciences, Vol. 55, No. 3, pp. 135-135, 1993 DOI:

S. T. Reed, D. C. Martens, “Copper and Zinc . Methods of Soil Analysis “, Chemical Methods Journal, Vol. 2, No. 1, pp. 703-722, 1996 DOI:

B. J. Alloway, “Zinc in soils and crop nutrition. International Zinc Association, Brussels”, International Fertilizer Industry Association, Vol. 2, No. 3, pp. 10-15, 2008

G. Gramss, K. D. Voigt, F. Bublitz, H. Bergmann, “Increased solubility of (heavy) metals in soil during microbial transformations of sucrose and casein amendments”, Journal of basic microbiology, Vol. 43, No. 6, pp. 483-498, 2003 DOI:

M. A. Elrashidi, G. A. O'Connor, “Boron sorption and desorption in soils”, Soil Science Society of America Journal, Vol. 46, No. 1, pp. 27-31, 1982 DOI:

I. Cakmak, R. M. Welch, B. Erenoglu, V. Romheld, W. A. Norvell, L. V. Kochian, “Influence of varied Zinc supply on re-translocation of cadmium (109Cd) and rubidium (86Rb) applied on mature leaf of durum wheat seedlings”, Plant and Soil, Vol. 2019, No. 1, pp. 279-284, 2000 DOI:

H. Aktas, K. Abak, L. Ozturk, I. Cakmak, “The effect of Zinc on growth and shoot concentrations of sodium and potassium in pepper plants under salinity stress”, Turkish journal of agriculture and forestry, Vol. 30, No. 6, pp. 407-412, 2007

I. Cakmak, H. Marschner, “Effect of Zinc nutritional status on activities of superoxide radical and hydrogen peroxide scavenging enzymes in bean leaves”, Plant and Soil, Vol. 155, No. 1, pp. 127-130, 1993 DOI:

D. P. Singh, S. P. Singh, “Action of heavy metals on Hill activity and O 2 evolution in Anacystis nidulans”, Plant physiology, Vol. 83, No. 1, pp. 12-14, 1987 DOI:

T. N. V. K. V. Prasad, P. Sudhakar, Y. Sreenivasulu, P. Latha, V. Munaswamy, K. R. Reddy, T. Pradeep, “Effect of nanoscale Zinc oxide particles on the germination, growth and yield of peanut”, Journal of plant nutrition, Vol. 35, No. 6, pp. 905-927, 2012 DOI:

Z. Stoyanova, S. Doncheva, “The effect of Zinc supply and succinate treatment on plant growth and mineral uptake in pea plant”, Brazilian Journal of Plant Physiology, Vol. 14, No. 2, pp. 111-116, 2002 DOI:

C. Kaya, D. Higgs, “Response of tomato (Lycopersiconesculentum L.) cultivars to foliar application of Zinc when grown in sand culture at low Zinc ”, Scientia Horticulturae, Vol. 93, No. 1, pp. 53-64, 2002 DOI:

I. Cakmak, M. Kalayci, H. Ekiz, H. J. Braun, Y. Kilinc, A. Yilmaz, “Zinc deficiency as a practical problem in plant and human nutrition in Turkey: a NATO-science for stability project”, Field Crops Research, Vol. 60, No. 1, pp. 175-188, 1999 DOI:

L. Ozturk, M. A. Yazici, C. Yucel, A. Torun, C. Cekic, A. Bagci, I. Cakmak, “Concentration and localization of Zinc during seed development and germination in wheat”, Physiologia Plantarum, Vol. 128, No. 1, pp. 144-152, 2006 DOI:

J. W. MacAdam, C. J. Nelson, R. E. Sharp, “Spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone”, Plant Physiology, Vol. 99, No. 3, pp. 872-878, 1992 DOI:

J. Raymond, N. Rakariyatham, J. L. Azanza, “Purification and some properties of polyphenoloxidase from sunflower seeds”, Phytochemistry, Vol. 34, No. 4, pp. 927-931, 1993 DOI:

X. Wang, H. Han, X. Liu, X. Gu, K. Chen, D. Lu, “Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants”, Journal of Nanoparticle Research, Vol. 14, No. 6, pp. 840-841, 2012 DOI:

C. Saison, F. Perreault, J. C. Daigle, C. Fortin, J. Claverie, M. Morin, R. Popovic, “Effect of core–shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii”, Aquatic toxicology, Vol. 96, No. 2, pp. 109-114, 2010 DOI:

R. John, P. Ahmad, K. Gadgil, S. Sharma, “Antioxidative response of Lemna polyrrhiza L. to cadmium stress”, Journal of Environmental Biology, Vol. 28, No. 3, pp. 583-589, 2007

H. Wang, X. Kou, Z. Pei, J. Q. Xiao, X. Shan, B. Xing, “Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants”, Nanotoxicology, Vol. 5, No. 1, pp. 30-42, 2011 DOI:

F. J. Castillo, C. Penel, T. Gaspar, H. Greppin, Plant peroxidases 1980-1990: topics and detailed literature of molecular, biochemical, and physiological aspects, University of Geneva, 1992

S. Hiraga, K. Sasaki, H. Ito, Y. Ohashi, H. Matsui, “A large family of class III plant peroxidases”, Plant and Cell Physiology, Vol. 42, No. 5, pp. 462-468, 2001 DOI:

L. Vamos-Vigyazo, “Polyphenol oxidase and peroxidase in fruits and vegetables”, CRC Rev. Food Sci. and Nutrition, Vol. 15, No. 1, pp. 49 – 127, 1981 DOI:

C. O. Dimkpa, J. E. McLean, D. E. Latta, E. Manangón, D. W. Britt, W. P. Johnson, A. J. Anderson, “CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat”, Journal of Nanoparticle Research, Vol. 14, No. 9, pp. 1124-1125, 2012 DOI:

A. Schützendübel, P. Schwanz, T. Teichmann, K. Gross, R. Langenfeld-Heyser, D. L. Godbold, A. Polle, “Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots”, Plant physiology, Vol. 127, No. 3, pp. 887-898, 2001 DOI:

J. Gzyl, K. Rymer, E. A. Gwóźdź, “Differential response of antioxidant enzymes to cadmium stress in tolerant and sensitive cell line of cucumber (Cucumis sativus L.)”, Acta Biochimica Polonica, Vol. 56, No. 4, pp. 722-723, 2009 DOI:

M. R. D’Souza, V. R. Devaraj, “Oxidative stress biomarkers and metabolic changes associated with cadmium stress in hyacinth bean (Lablab Purpureus)”, African Journal of Biotechnology, Vol. 12, No. 29, pp. 10-12, 2013 DOI:

A. Saffar, M. B. Najjar, M. Mianabadi, “Activity of antioxidant enzymes in response to cadmium in Arabidopsis thaliana”, Journal of Biological Sciences, Vol. 9, No. 1, pp. 44-50, 2009 DOI:

L. Wei, M. Thakkar, Y. Chen, S. A. Ntim, S. Mitra, X. Zhang, “Cytotoxicity effects of water dispersible oxidized multiwalled carbon nanotubes on marine alga, Dunaliella tertiolecta”, Aquatic Toxicology, Vol. 100, No. 2, pp. 194-201, 2010 DOI:

V. Kumar, A. Kumari, P. Guleria, S. K. Yadav, Evaluating the toxicity of selected types of nanochemicals, in: Reviews of environmental contamination and toxicology, pp. 39-121, Springer, 2012 DOI:


How to Cite

Z. Hafizi and N. Nasr, “The Effect of Zinc Oxide Nanoparticles on Safflower Plant Growth and Physiology”, Eng. Technol. Appl. Sci. Res., vol. 8, no. 1, pp. 2508–2513, Feb. 2018.


Abstract Views: 1868
PDF Downloads: 663

Metrics Information
Bookmark and Share