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ABSTRACT 

The security and dependability of neural network designs are increasingly jeopardized by adversarial 

attacks, which can cause false positives, degrade performance, and disrupt applications, particularly on 

resource-constrained Internet of Things (IoT) devices. Τhis study adopts a two-step approach: first, 

designs a robust Convolutional Neural Network (CNN) that achieves high performance on the MNIST 

dataset, and second, evaluates and enhances its resilience against advanced adversarial techniques such as 

Deepfool and L-BFGS. Initial evaluations revealed that while the proposed CNN performs well on 

standard classification tasks, it is vulnerable to adversarial attacks. To mitigate this vulnerability, APE-

GAN, an innovative adversarial training technique, was employed to re-train the proposed CNN, 

significantly improving its robustness against adversarial attacks while optimizing performance for 

embedded systems with limited computational resources. Systematic experimentation demonstrates the 

effectiveness of APE-GAN in enhancing both the accuracy and resilience of the proposed CNN, 

outperforming conventional methods and establishing it as a pioneering solution in adversarial machine 

learning. By integrating APE-GAN into the training process, this research ensures the secure and efficient 

operation of the proposed CNN in real-world IoT applications, marking a significant step forward in 

addressing the challenges posed by adversarial attacks. 
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I. INTRODUCTION  

In recent years, there have been major shifts in the 
technological environment due to the extensive use of neural 
networks in embedded systems such as IoT devices. Image 
classification and natural language processing are only two of 
the many tasks that advanced computer models have proven to 
be exceptionally adept at. Due to this, complicated data 
analysis, decisions are now more efficient and accurate. A new 
age of invention and advancement has begun with the broad 
adoption of this technology, which has expanded across 
numerous sectors and industries [1]. With the introduction of 
deep learning, a subfield of machine learning, models can now 
learn from data and gain a systematic understanding of the 
world, completely transforming computing approaches. To 
better represent data through several layers, deep learning 
models use backpropagation algorithms to sift through massive 
datasets in search of complicated patterns. Advancements in 
high-performance hardware and refined architectures for Deep 
Neural Networks (DNNs) have allowed deep learning to make 
great strides in several domains. This development 
encompasses established fields, such as image classification 
and voice recognition, and cutting-edge ones, such as 
pharmacological chemical analysis and neural circuit 
rebuilding. Industry giants such as Google, Alibaba, Intel, and 
Nvidia have exerted a great influence in driving advances in 
AI-based services by presenting remarkably accurate models 
[2]. 

Concerns have arisen about the adversarial attack 
susceptibility of neural networks and deep learning, despite the 
significant advances in these technologies. Neural networks are 
vulnerable to adversarial attacks that alter the input data on 
purpose. The accuracy and dependability of neural networks 
can be compromised by carefully crafted disruptions that cause 
misclassifications or inaccurate predictions [4]. The 
implications of these vulnerabilities are more severe in safety-
critical applications, such as security systems, medical 
diagnostics, and autonomous vehicles. Serious hazards, 
including loss of life or the theft of sensitive data, could result 
from seemingly insignificant errors [3]. Therefore, it is critical 
to address weaknesses in neural network designs and limit the 
dangers of adversarial attacks if neural network-based systems 
are to continue to be effective and reliable. Researchers have 
intensified their efforts across many domains to better 
understand adversarial attacks, the resilience of neural network 
architectures, and how to strengthen defensive techniques [5]. 

Research on neural network vulnerabilities has been 
extensive, with many studies shedding light on various parts of 
the problem and offering novel approaches to strengthening 
their security. However, concerns about the security and 
reliability of Deep Neural Networks (DNNs) have grown in 
importance as these systems expand their use beyond the 
laboratory. Although attackers can subtly alter legitimate 
inputs, changes that are frequently invisible to human observers 
can trick trained models into producing false outputs. In [6], it 
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was shown how easily attackers can target high-performing 
DNNs, demonstrating how important it is to have strong 
security measures in place. This security issue is prevalent, as 
weaknesses have been found in Automatic Speech Detection 
(ASR), Voice-Controllable Systems (VCS), and other 
applications [7-9]. In [2], attacks on autonomous cars were 
presented by manipulating traffic signs to trick learning 
systems. The adversarial learning of linear models has been 
supported by extensive analysis and experiments in 
supplementary studies [10]. In [11], the generalizability of 
adversarial scenarios was explored. In [12], different 
approaches were presented, reflecting the current state of 
affairs in neural network safety. Using distributed deep 
learning algorithms to protect the privacy of training data is at 
the heart of these methods.  

Although there has been significant progress in discovering 
vulnerabilities in neural networks and developing solutions to 
mitigate them, there is still a need for more robust and efficient 
alternatives. Previous studies have frequently ignored the 
special difficulties that arise in neural network applications. 
Specific policies are required to handle resource-constrained 
situations and the potential for attacks. This study aimed to 
address this gap by thoroughly investigating adversarial threats 
in neural network applications. Specifically, the sensitivity of 
neural networks trained on the MNIST dataset to various attack 
strategies was investigated, including Fast Gradient Sign 
(FGSM), Deepfool, and L-BFGS, to illuminate multiple 
problems caused by unfavorable threats in reality-global 
distribution scenarios. Furthermore, this study presents a 
strategy that utilizes adversarial training approaches, 
specifically the APE-GAN method, to strengthen the resistance 
of neural network architectures to adversarial attacks. This 
research aims to enhance the knowledge of neural network 
security and aid in the creation of strong defense mechanisms 
by thoroughly evaluating and testing these methods. 

As deep learning models continue to evolve, the demand 
for efficient model deployment in resource-constrained 
environments has led to the development of various 
compression and quantization techniques. These methods aim 
to reduce the size and complexity of neural networks while 
maintaining their accuracy, which is crucial for embedded 
system applications. Adversarial attacks are carefully designed 
to manipulate the decision-making process of a classifier and 
drastically affect accuracy, loss, and precision, which are 
important performance measures [13]. These attacks are based 
on computer vision principles. In [14], an assortment of attacks, 
including white-box and black-box attacks, as well as 
techniques such as FGSM, PGD, and MIM, were described. 
This study started by reviewing the ground rules that are 
critical to comprehending the patterns of adversarial attacks on 
neural networks, distinguishing between white-box and black-
box adversarial attacks [15]. 

In a white box attack, the attacker knows all the architecture 
details, variables, and gradients of the attacked model, making 
it a very sophisticated way to apply adversarial methods [16]. 
This in-depth knowledge allows adversaries to painstakingly 
manipulate input data to expose weaknesses in the model's 
decision-making process. On the other hand, black box attacks 

are characterized by a lack of visibility into the target model's 
inner workings. Without understanding the model's structure or 
parameters, attackers in such cases depend entirely on its input-
output behavior. Therefore, black-box attackers employ 
strategies such as transferability [17], where adversarial 
instances created for one model are applied to another that 
shows similar behavior. In contrast to black-box attacks, which 
operate within the constraints of restricted access to 
information, white-box attacks use all internal knowledge. This 
is the fundamental difference between these two attack types. 

Many studies [3, 18, 19] have classified adversarial attacks 
into different types, with white-box attacks being the first. It is 
possible to further categorize these hostile attacks as targeted or 
non-targeted. An adversarial example is designed to induce a 
specific classification in targeted attacks, such as labeling all 
images as representing one person, whereas, in non-targeted 
attacks, the only goal is to cause misclassifications regardless 
of the resulting class. Iterative model access to compute 
gradients is used in adversarial example generation [20], and 
white-box attacks can be classified into two basic types: limited 
optimization and gradient-based optimization. 

In [21], a novel defense mechanism was proposed against 
white-box adversarial attacks. To reduce the susceptibilities of 
neural networks to adversarial disruptions, this strategy 
incorporated randomized discretization as a robust 
countermeasure. This strategy was effective in strengthening 
the resistance of neural network designs against white-box 
attacks. In [22], a unique approach to generating white-box 
adversarial examples was presented, which was specifically 
customized for text classification tasks. The Hotflip approach 
aims to generate adversarial disruptions that are capable of 
fooling text classification machines while preserving semantic 
coherence. This study adds to the expanding body of 
knowledge on adversarial attacks in natural language 
processing, providing useful insights into the weaknesses of 
text classification algorithms. In [23], transfer learning 
approaches were used to increase the efficacy of adversarial 
attacks across a variety of models and domains. Incorporating a 
transfer-based method provides significant gains in producing 
hostile instances that are capable of fooling target models. This 
study provided crucial insights into the domain of adversarial 
machine learning.  

In [24], a unique approach was presented to effectively 
distill hostile black-box attacks. This method aimed to enhance 
the effectiveness of black-box attacks by transferring 
information from white-box attacks. The results showed 
substantial gains in the efficiency and efficacy of creating 
adversarial samples that are capable of fooling target models. 
This study offered useful insights into the process of 
developing viable adversarial attack tactics. As shown in [25], 
this strategy is effective in enhancing the resistance of machine 
learning models to adversarial disruptions. This study made a 
significant contribution to ongoing attempts to design solid 
defenses against adversarial attacks in computer vision and 
pattern recognition applications. In [26], effective defensive 
strategies were studied and proposed to reduce the impact of 
adversarial attacks. This study provided useful insights and 
tactics to improve the resilience and security of artificial 
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intelligence systems against external disturbances. In [27], a 
unique training strategy, named bilateral adversarial training, 
was proposed to accelerate the process of building robust 
models to overcome the challenges of adversarial attacks. This 
study made significant contributions to the fields of computer 
vision and adversarial machine learning by introducing novel 
approaches to improve the robustness of machine learning 
models. In [28], the efficacy of the correlation power analysis 
approach in the presence of noise for side channel assaults was 
investigated. The findings provided valuable insights into the 
performance of side-channel attack strategies in noisy settings, 
shedding light on possible vulnerabilities and countermeasures 
in the field of information security. 

This study presents a unique Convolutional Neural Network 
(CNN) design that is suitable for the MNIST dataset and 
assesses its robustness against adversarial attacks. This CNN 
architecture was put through rigorous testing by employing 
state-of-the-art adversarial attack approaches, such as Deepfool 
and L-BFGS to evaluate its resilience. Following that, a novel 
strategy was proposed to enhance the model's defenses against 
adversarial attacks. The adversary training process was 
incorporated with the APE-GAN approach to strengthen the 
defenses of the model. 

II. PROPOSED APPROACH: STRENGTHENING CNN 

DEFENSES AGAINST MALICIOUS ATTACKS 

This study aimed to improve the security of CNNs against 
offensive assaults. It begins by providing a comprehensive 
description of the process of developing a CNN architecture 
that is particularly designed for the MNIST dataset. Then an 
exhaustive assessment is performed to determine the resilience 
of the model in the face of a variety of adversarial attack 
strategies. This method incorporates a new training strategy 
that uses the APE-GAN technique in the adversarial training 
process of the proposed CNN to strengthen the defenses of the 
model and reduce the effect of adversarial disruptions. 
Exhaustive experiments and in-depth analyses were carried out 
to determine if the proposed technique is effective in 
strengthening CNN's security against adversarial threats. Figure 
1 shows the approach suggested for the CNN, along with how 
it can be customized to withstand an adversarial attack. 

A. MNIST Dataset 

The MNIST dataset has an important position in the field of 
neural networks and is well-known for its function as a core 
benchmark in image classification tasks. MNIST is a basic 
resource for training and assessing a variety of algorithms [29]. 
It consists of a collection of grayscale pictures that are 28×28 
pixels in size and display handwritten numbers ranging from 0 
to 9. Due to its straightforwardness and the fact that it is clearly 
defined, it is an excellent starting place for researchers who 
want to investigate and improve machine learning models, 
especially CNNs. The MNIST offers a trustworthy framework 
for evaluating the robustness of CNN models against 
adversarial attacks due to its extensive application and uniform 
structure. Researchers can gain significant insights into the 
efficacy of protection mechanisms and methods by putting 
CNNs trained on MNIST to rigorous testing using adversarial 
approaches. MNIST continues to play an important role in the 

understanding and development of strong machine-learning 
models that can survive adversarial challenges in real-world 
applications. 

 

 
Fig. 1.  The proposed method to improve a CNN against adversarial 

attacks. 

The dataset was divided into 60,000 shapes for the training 
set and 10,000 shapes for the test set. Figure 2 presents a 
sample of the MNIST dataset. 

 

 

Fig. 2.  MNIST dataset sample. 

B. Proposed CNN Architecture 

As shown in Figure 3, the proposed CNN design is built 
with a series of layers that are optimized to handle and extract 
features from input data in a streamlined manner. It employs 
three convolutional layers to extract detailed geometric patterns 
and characteristics from the data. The training process is 
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enhanced by deliberately integrating three layers of batch 
normalization to stabilize and expedite convergence. The 
design also includes three dropout layers to prevent overfitting 
by randomly turning off some neurons while training. A one-
dimensional matrix is created by flattening the output of the 
convolutional layers. This allows for a smooth transition to 
fully linked layers. Lastly, the architecture provides a strong 
framework, appropriate for tasks such as image identification 
and classification, which comprises two dense layers that are 
responsible for classification using learned features. 

 

 
Fig. 3.  Proposed CNN architecture. 

C. Deepfool Technique 

The Deepfool method describes an iterative strategy for 
constructing adversarial instances taking advantage of the 
linear character of neural networks [30]. This method seeks to 
identify the smallest amount of disturbance that is necessary to 
incorrectly categorize an input sample. Mathematically, the 
disrupted input �′ is calculated as follows: 

�� � � � � ⋅  
	
��
	����

∥�	
��∥
. ��
��   (2) 

where �′  denotes the disrupted input data, �  designates the 
original input data, � denotes the small scalar value controlling 
the magnitude of the disruption, �
�� denotes the output of the 
neural network for the input � , and finally, ��
��  is the 
gradient of the neural network's output for the input data. This 
method makes adjustments to the disruption in the direction of 
the gradient in a repeated manner until the neural network 
incorrectly classifies the disrupted input. This iterative process 
will continue until the required degree of misclassification is 
attained. 

D. L-BFGS Technique 

The Limited-memory BFGS (L-BFGS) is another technique 
that is often used for adversarial attacks [2]. However, in 
contrast to previous methods, L-BFGS explicitly optimizes the 
disruption to maximize the loss and cause misclassification. 
The disrupted input �′ is iteratively calculated as follows: 

�′ � � � � ⋅ ����
����  �
�′, � !"#��  (3) 

where �′ is the perturbed input data, � represents the original 
input data, and � denotes the small scalar value controlling the 
magnitude of the perturbation. 

III. RESULTS AND DISCUSSIONS 

A. Standard Training Results of the Proposed CNN 

Table I presents the performance evaluation results of the 
proposed CNN trained on the MNIST dataset, showcasing its 
classification metrics across all 10-digit classes (0–9). The 
model achieves near-perfect results, with precision, recall, and 
F1-score values consistently close to 1.00 for each class. The 
overall accuracy is 100%, indicating exceptional performance 
on the dataset. The macro average (0.99) and weighted average 
(1.00) further demonstrate the model's robustness and balanced 
performance across varying class distributions. These results 
reflect the effectiveness of the standard training process applied 
to the proposed CNN on the MNIST dataset 

TABLE I.  PERFORMANCE EVALUATION 

Classes Precision Recall F1 score Support 

0 1.00 1.00 1.00 420 

1 0.99 0.99 0.99 471 

2 1.00 0.99 0.99 410 

3 1.00 1.00 0.99 423 

4 0.99 0.99 0.99 427 

5 1.00 1.00 0.99 382 

6 1.00 1.00 0.99 413 

7 0.99 0.99 0.99 470 

8 0.99 1.00 0.99 386 

9 1.00 0.99 0.99 395 

Accuracy 1.00 4210 

Macro avg 0.99 1.00 1.00 4210 

Weighted avg 1.00 1.00 1.00 4210 

 
B. Attack Results on the Standard-Trained CNN Model 

1) Deepfool Attack Results  

Meticulous experimentation and analysis elucidate the 
repercussions of this adversarial attack method on the model's 
performance and resilience. By varying parameters such as the 
number of iterations and the maximum perturbation, the impact 
of the Deepfool attack was evaluated on the model's ability to 
accurately classify digits. Additionally, the resulting 
misclassifications induced by the attack were scrutinized, 
shedding light on the specific patterns and characteristics of 
adversarial perturbations that lead to erroneous predictions. 
This examination allows gaining deeper insights into the 
vulnerabilities of the proposed model when subjected to 
sophisticated adversarial attacks such as Deepfool and 
underscores the importance of developing robust defense 
mechanisms to protect against such threats. Figure 4 illustrates 
the Deepfool attack on the standard CNN. 
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Fig. 4.  Deepfool attack. 

2) LBFGS Attack Results 

The model's performance was analyzed in the face of 
adversarial disruptions induced by the LBFGS Attack. By 
examining the resulting misclassifications, specific patterns and 
characteristics of adversarial perturbations that lead to incorrect 
predictions can be identified. This analysis provides valuable 
insights into the vulnerabilities of the proposed model when 
subjected to sophisticated adversarial attacks such as LBFGS, 
highlighting the need for robust defense mechanisms to 
enhance its resilience against such threats. Figure 5 presents the 
LBFGS attack on the standard CNN model. 

 

 

Fig. 5.  LBFGS attack. 

C. CNN-based Adversarial Training using APE-GAN  

The results presented in Table II highlight the effectiveness 
of the APE-GAN framework in mitigating the impact of 
adversarial attacks on the CNN trained on the MNIST dataset. 
The original CNN achieves perfect accuracy (100%) on 
standard data but suffers severe degradation under adversarial 
scenarios. For instance, the accuracy drops dramatically to 
25.6% and 30.8% under the Deepfool and L-BFGS attacks, 
respectively, underscoring the vulnerability of CNN designs to 
adversarial perturbation. However, with adversarial training 
using APE-GAN, the accuracy of the proposed CNN under 
these attacks improves significantly to 60.3% (Deepfool) and 
69.4% (L-BFGS), reflecting improvements of 34.7% and 
38.6%, respectively. This shows that APE-GAN effectively 
enhances the robustness of the CNN against attack scenarios 
while maintaining high performance. 

TABLE II.  PERFORMANCE OF ADVERSARIAL TRAINED 
CNN USING APE-GAN  

Scenario Test 
CNN accuracy 

(%) standard 

CNN accuracy (%) 

using APE-GAN 

Improvement 

(%) 

Original Data 100 99.6 -0.4 

Adversarial attacks (mean CNN accuracy after varying the introduced 

error  $ at the input) 

Deepfool attack 25.6 60.3 34.7 

LBFGS attack 30.8 69.4 38.6 

 

D. Comparative Study 

Table III compares the proposed APE-GAN approach with 
a related method that employs federated learning [30]. While 
both techniques target adversarial robustness, APE-GAN 
achieves superior accuracy (99.6%) on the MNIST dataset 
compared to 97.2% for the federated learning approach. 
Additionally, the CNN based on APE-GAN shows notable 
improvement in robustness, effectively mitigating the L-BFGS 
attack (%  = 0.1) with an improvement of 85.7%, while the 
federated learning approach reports a 58.3% robustness against 
label-flipping and Gaussian attacks. This comparison further 
highlights the superiority of APE-GAN in adversarial training, 
particularly in scenarios involving highly sophisticated attack 
techniques. The results underscore the contribution of this 
study in addressing critical security challenges in neural 
network-based IoT applications. By leveraging APE-GAN, the 
proposed CNN not only improves adversarial robustness but 
also ensures computational efficiency, making it particularly 
suited for resource-constrained environments. This research 
sets a benchmark for the development of secure and reliable 
neural network designs, paving the way for more resilient IoT 
systems against evolving adversarial threats. 

TABLE III.  COMPARATIVE STUDY 

Study 
Training 

techniques 
Dataset 

Accuracy 

(%) 

Robustness 

improvement 

(%) 

This work 

(APE-GAN) 
APE-GAN MNIST 99.98 

85.7 

L-BFGS attack 

 (% � 0.1) 

[30] 
Federated 

learning 
MNIST 97.2 

58.3 

Label-flipping, 

Gaussian 
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IV. CONCLUSION AND FUTURE WORK 

This study introduces a novel perspective to enhance the 
resilience of neural network designs against adversarial attacks, 
particularly in resource-constrained embedded systems such as 
IoT devices. The APE-GAN adversarial training method 
achieved substantial improvements in both accuracy and 
robustness compared to conventional approaches such as 
FGSM and similar methods. Unlike previous strategies, APE-
GAN not only mitigates adversarial vulnerabilities but also 
achieves these results with a level of efficiency suitable for 
deployment on devices with limited computational resources. 
These findings underscore the importance of integrating 
advanced adversarial training techniques into the design 
process of machine learning systems to protect against evolving 
attack strategies. The systematic evaluation of APE-GAN 
against sophisticated attacks such as Deepfool and L-BFGS 
highlights its unique ability to address both the accuracy and 
reliability challenges posed by adversarial inputs. This 
represents a significant step forward in the field of adversarial 
machine learning, particularly in ensuring the robustness of 
neural networks in real-world applications. The novelty of this 
work lies in its dual focus on enhancing security and 
optimizing performance for embedded systems, paving the way 
for future research. Expanding the scalability and applicability 
of APE-GAN across diverse datasets and domains could 
unlock new pathways to create resilient machine-learning 
solutions that meet the demands of increasingly sophisticated 
adversarial environments. Thus, this study establishes APE-
GAN as a promising foundation for the next generation of 
secure and reliable neural network designs. 
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