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ABSTRACT 

This paper examines adaptive control strategies for stabilizing robots, focusing on Li-Slotine adaptive 

control and Iterative Learning Control (ILC). Both methods handle uncertainties through learning and 

compensation, ensuring stability and precision. Li-Slotine control, based on Lyapunov theory, dynamically 

adjusts parameters for asymptotic stability in uncertain systems. ILC improves performance in repetitive 

tasks by refining control inputs using tracking errors, making it suitable for robotics and manufacturing. 

While Li-Slotine excels in real-time adaptation and robustness to disturbances, its computational demands 

challenge high-degree-of-freedom systems. ILC enhances accuracy through iterative learning but is 

sensitive to noise and requires careful tuning. MATLAB simulations and experimental results demonstrate 

the effectiveness of both approaches. Future work will explore hybrid frameworks that combine the 

adaptability of Li-Slotine with the data-driven refinement of ILC to provide robust solutions for complex, 

dynamic robotic systems. 

Keywords-iterative learning control; industrial robots; Taylor series analysis 
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I. INTRODUCTION  

The robot's dynamic equation in its general form [1] defines 
the control quantity as torque, with the joint variable and 
moving trajectory as the control values. Unknown parameters 
and joint interconnections influence trajectory tracking 
accuracy. Thus, a controller must be designed to ensure precise 
trajectory tracking without relying on uncertain model 
parameters or axis interdependence. The error between desired 
and actual joint angles must remain minimal (<0.1%). 
Traditional regulators with fixed parameters, such as gravity-
compensated PD controllers [2], PID controllers [1], and 
model-based nonlinear control [1], cannot meet these 
requirements as they are ineffective for systems with channel 
interleaving. Therefore, an adaptive control system for multi-
degree-of-freedom robot motion control is required to address 
these challenges. 

The adaptive control method estimates unknown 
parameters during operation using the system's input and 
output signals and adapts them to calculate control signals [3-
6]. These controllers typically follow a fixed structure, often 
based on classical designs, while their parameters are updated 
after each sampling cycle according to the adaptive update law. 
The resulting signal is then sent to the controller. Adaptive 
control methods include standard model-based approaches, 
explicit assumptions, and integrated adaptive laws. Other 
techniques, such as sustainable adaptive control and adaptive 
control with state observers, improve control performance by 
maximizing advantages and minimizing disadvantages. 

Manipulator models often have uncertain parameters such 
as load, mass, inertia, and joint friction. The Li-Slotine 
adaptive control law addresses this by continuously updating 
dynamic parameters to ensure stability and minimize joint 
position errors based on Lyapunov stability criteria. While 
effective, it suffers from chattering and incomplete error 
elimination, which may harm actuators. Like neural networks 
for error correction, this approach requires high computational 
effort to solve constrained nonlinear optimization problems in 
real time. 

Most industrial control methods rely heavily on 
mathematical models, yet such models lose accuracy over time 
as device properties change, affecting control performance. 
Although initially accurate, traditional controllers degrade over 
time. Iterative Learning Control (ILC) offers a practical 
solution by iteratively adjusting the control signal. While 
sometimes classified as adaptive, ILC differs from adaptive 
controllers in that it only updates the control signal, not the 
dynamic controller itself. Similarly, ILC differs from intelligent 
control systems using neural networks in that it does not re-
adjust controller parameters, but only re-edits control signals, 
according to [7]. Such a control principle is called learning 
based on experience to improve the quality of current and 
future control, also known as control through the automatic 
learning process. As a result, this technology can be added to 
the traditional control system. 

The conventional procedure is to develop a new 
mathematical model for the control object, including the 
actuator, and then calibrate it with this model to restore control 

quality. Over time, the traditional system struggles to maintain 
its initial quality due to equipment wear and model 
inaccuracies. Recalibration of such controllers typically 
requires rebuilding the system's mathematical model, 
redesigning, and reinstalling the controller. Studies [8-10] 
suggest combining iterative learning with the traditional 
controller to simplify this process, forming a feedforward 
iterative learning controller. However, iterative learning is only 
suitable for volatile processes [11], where the system is first 
stabilized using a traditional controller [12-19], a method 
known as indirect iterative learning control. This combined 
controller, while effective, still relies on the system's 
mathematical model, limiting its intelligent application. Thus, 
the focus shifts to intelligently stabilising the system (e.g., 
BIBO, ISS, or uniformly ultimately bounded) without heavy 
dependence on the model, allowing iterative learning to handle 
output tracking. This paper focuses on extending ILC to 
unstable systems without relying on traditional stabilization 
methods. Solving this issue would enable the direct application 
of ILC to unstable and nonlinear systems, eliminating the need 
for transmission iterative control structures. While linear or 
pre-processed ILC has been widely used for various unstable 
nonlinear systems, this study aims to broaden its scope.  

II. ROBOT CONTROL USING LI-SLOTINE METHOD 

A. Algorithmic Content 

Consider the dynamic equation of a manipulator without 
indeterminate constant parameters, written as: 

.M q Cq G    ɺɺ ɺ     (1) 

Using the pseudo-control definer, defined as: 

. ( - )dM v Cv G K v q     ɺ ɺ    (2) 

where: 

( - )

- ( - ) -

d d d

d d

v q q q q e

r e e q q q q v q

 

 
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  (3) 

dK is the optional positive-definite symmetric matrix, and

  ( )idiag   is the positive definite diagonal matrix 

( > 0)i . We must prove that 0e  . Because    is positive 

definite, that is, -e e ɺ when 0r e e     ɺ  it always has 

0e . 

Using positive definite function: 
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because: 
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If 0r   the error has not yet reached zero ( 0e ), the 

system will appear to vibrate. Since the manipulator's motion 
equation contains uncertain constant parameters, the assumed 
controller (2) also includes these uncertain components, so the 
robot’s motion system will no longer be as accurate as in the 
explicitly assumed controller (2). In this case, some indirect 
adaptive control methods should be considered. We will 
change the uncertain parameter with the adjustment mechanism 

to finally achieve 0r  , which means we still have a stable 

tracking condition 0e  . The following assumptions are 

needed to apply the Li-Slotine adaptive control law to the robot 
motion system with precise trajectory tracking: the dynamic 
model has enough actuators; the uncertainty in the dynamic 
model is that the constant parameters are not known precisely 
or not known. From (1), the Li-Slotine adaptive control law is 
given as follows: 

ˆ ˆˆ ˆ- ( , , , ) -d dMv Cv G K r W q q v v p K r    ɺ ɺ ɺ  (7) 

where ˆ ˆ ˆ, ,C G M  are the estimated components of , ,C G M , p̂  

is the adjustment component of the manipulator model, and

( , , , )W q q v vɺ ɺ  is the following determination matrix, abbreviated 

(.)W . 

Combining (1) and (7) gives the closed dynamic equation: 

ˆ ˆˆ - dMq Cq G Mv Cv G K r    ɺɺ ɺ ɺ   (8) 

with: 

- -
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The deviations between the actual value and the estimated 
value are as follows: 

ˆ ˆˆ ˆ- ; - ; - ; -M C G pE M M E C C E G G e p p   ɶ ɶ ɶ ɶ  (10) 

With this setting, the closed dynamic equation of the robot 
becomes: 

( , , , )d M C G pMr Cr K r E v E v E W q q v v e     ɶ ɶ ɶɺ ɺ ɺ ɺ ɶ (11) 

To build a structure for adjusting the parameter vector p(t), 
we use a positive definite function: 

-1

2 ( )
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where   is the diagonal matrix, favourable definite, 

1 2( , ,..., )ndiag     option. 
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so: ( ) ( )TM q M q . 

Combined with dynamic equations (1) and (7), we have: 

( , ) [ ] -[ ]Mr C q q r Mv CV G Mq Cq G     ɺ ɺ ɺ ɺɺ ɺ  

   W( , , , ) - -Mr q q v v p Cr ɺ ɺ ɺ   (14) 

Substituting (13) we can determine: 
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So, 
1

-
2

S C M ɺ  is a skewed symmetric matrix, i.e.: 
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with adaptive update rules: 

ˆ - T
pp e Y r ɺ ɺɶ     (19) 

2 ( ) - 0
T

drV r K r     ɺ    (20) 

means guaranteed system: 0r e e  ɺ when   t  
lim 0 lim 0r e

t t
   

 
. 

This ensures that the manipulator's trajectory approaches 
the set trajectory as time approaches infinity. The block 
diagram of the Li-Slotine adaptive control system is shown in 
Figure 1. 

 

 

Fig. 1.  Li-Slotine adaptive control system diagram. 
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B. Simulation and Verification via Robot with 3 Degrees of 
Freedom using Matlab/Simechanic Software 

The control object estimation parameters are assumed as 

follows: 1ˆ 67 kgm  , 2ˆ 52 kg m  , 3ˆ 16 kg m  , 1
ˆ 0,11 ml  , 

2ˆ 0.055a  , and 3ˆ 0.045a  . The parameters of the Li-Slotine 

adaptive controller are shown in Table I, and the results of the 
3-degree-of-freedom robot dynamic equation, determined in 
[20], are shown in Figures 2 and 3. 

TABLE I.  PARAMETERS OF THE LI-SLOTINE ADAPTIVE 
CONTROLLER 

Symbol Parameter name Parameter values of joint axes 

dK  Adjustment factor 
1

= 1000
d

K , 
2

= 1500
d

K , =
3

 2000
d

K  

  
Positive diagonal 

matrix 1
282  , 

2
285  , 

3
282   

 

 

Fig. 2.  Representation of the response between set joint angles (qd) and 

actual joint angles (qt). 

 
Fig. 3.  Representation of the deviation between set joint angles (qd) and 

actual joint angles (qt) 

The actual joint angles of the three joints all adhere to the 
set joint angles, and since the difference between the set joint 
angles and the actual joint angles is consistently small 
(<0.002), the system is stable. 

C. Experimental Model for Applying the Li-Slotine Adaptive 
Controller for the Robot Motion System in the Real-Time 
Domain, Controlling the Motion Trajectory in Three-
Dimensional Space with Three Robot Joints 

1) Control Object 

The detailed installation drawings of the control object are 
shown in Figure 4 and the specific parameters are shown in 
Table II. 

 

 

Fig. 4.  Detailed assembly drawing of the control object. 

TABLE II.  SPECIFIC PARAMETERS OF THE CONTROL 
OBJECT 

Robot Swivel angle Size (mm) 

Shoulder 

Fold: 180° 

External rotation: 90° 

Internal rotation: 70° 

Format: 180° 

Close: 45°; Stretch: 45° 

220 

Elbow joint Stretching: 0°; Fold: 140° 250 

Wrist joint 
Stretch: 70°; Fold: 80°-90° 

Tilt and rotate: 20°; Pillar tilt: 35° 
 

 

2) Experimental Configuration 

The main components in the system's experimental 
configuration include the FlexMotion-6C digital signal 
processing card, inverter system-servo motor, computer, and 
robot. The sequence of experimental steps is as follows: 

1. Connect the servo motors of the Almega 16 robot to the 

corresponding inverters in the inverter cabinet and control 

them according to the diagram shown in Figure 5. 

2. Connect the encoders attached to the servo motor to the 

inverter and from the inverter to the FlexMotion-6C 

control card via the UMI intermediate block. 

3. Start the computer and the measurement & automation 

software to enter the control program and set the spatial 

trajectory of the robot's clamp movement block. 

4. Adjust the forward, reverse (limit) and zero-point (home) 

switches according to the spatial trajectory. 

5. Call the control interface to select the mode and parameters 

of rotation angle, velocity, acceleration, and deceleration 
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for the robot component movements according to the data 

contained in the measurement & automation software and 

FlexMotion-6C card, extrapolated from the above space 

orbit. 

6. Create a measurement interface to store images and data on 

space orbits, orbital errors, and transit times. 

The motion control system with an adaptive controller 
(Figure 5) compensates for factors such as gravity, friction, and 
external noise to ensure accurate torque control for each robot 
joint. This precise control aligns the actual joint angle q(t) with 
the desired angle, eliminating discrepancies and enabling the 
robot to follow a defined trajectory. The system's structure 
involves control software in the computer to set motion 
parameters, process data, and manage orbits. At the same time, 
the FlexMotion-6C card performs orbit interpolation and sets 
parameters for the three robot axes. Commands from the 
computer are executed concurrently. The adaptive controller is 
configured for the three axes using data files with a *.dll 
extension written in C. Sustainable adaptive controllers are 
used, with torque feedback provided by encoders and feedback 
loops managed by OMNUC inverters. These inverters handle 
the torque control loops corresponding to the axes, ensuring 
precise spatial trajectories. Key benefits of this system include 
synchronized axis operation, simultaneous start/stop for 
coordinated motion, and automatic parameter scaling for 
accurate movement within vector space. In the event of a 
problem such as overload, signal loss, or travel limit detection, 
all axes halt simultaneously, and the event is reported to the 
computer. The documentation and instructions provided allow 
configuration of parameter settings for both the adaptive 
controller and the inverters. 

3) Actual Results 

With the parameter set: 
1

1100dK  , 
2

2100dK  , 

3
2100dK  , 1 285  , 2 282  , 3 285  the results 

depicted in Figure 6 are obtained. The placement trajectory and 
the response trajectory of the robot clamp have minimal 
deviations (0.2.10 

-3
) and the system transient time is small (tqd 

= 452 ms). The average position error value of all three joints 
when using the Li-Slotine adaptive controller for three joints is 
minimal (0.1 %). The position error graph of each joint (joint 1, 
joint 2, joint 3) shows that the system fluctuates only slightly 
when it is stable. The application of the Li-Slotine adaptive 
control algorithm ensures accurate trajectory tracking quality 
without depending on the uncertain constant parameters of the 
dynamic model and the impact of interchanged components 
between joint axes. The Li-Slotine adaptive control law solves 
this problem by adjusting the uncertain parameters using the 
update rule (19) to compare the adjusted value with the actual 
value and input it to the controller. The control law is 
constructed based on Lyapunov stability criteria to ensure that 
the system is stable and the position errors of the rotating joints 

converge to zero when calculating the control torque dk for 
each joint. The Li-Slotine adaptive control algorithm, which is 
suitable for controlling multi-degree-of-freedom robot motion 
systems, suffers from the disadvantage of extensive 
computation and the requirement of specific fundamental 

knowledge. However, modern high-speed microprocessors can 
meet the specified criteria. Even if the mathematical model is 
precise enough to assist us develop a conventional controller 
that achieves an acceptable level of quality, changes in the 
structure and architecture of the materials used in the 
manufacture of the control devices and the actuator will 
inevitably occur over a long period of work. As a result, the 
inadequacy of the initial mathematical model used to represent 
the object leads to a loss of accuracy, thereby reducing the 
control effectiveness of the conventional controller. 

 

 

Fig. 5.  Li-Slotine adaptive controller structure. 

 
Fig. 6.  Control response when using Li-Slotine adaptive controller for 3 

robot joints. 
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III. QUALITY OF THE ROBOT TRANSFER CONTROL 

SYSTEM MEASURED BY AN ITERATIVE LEARNING 

METHOD 

Without using a mathematical model of the robot, the 
output structure control consists of two loop controls. The first 
control loop (inner loop) is an intelligent component 

recognition unit independent of the function   by ̂  using the 

Taylor series analysis method to transform (1) into a linear 
system at the input (22) using the compensation control 
method, as shown in Figure 7. The second control loop (outer 

loop) is a learning controller that determines the signal U  that 

makes the appropriate variable path q  firmly follow the given 

sample path R . This learning controller uses the P-type 
function with the learning function parameter K defined online 
after each K-th trial according to the principle of minimizing 
the sum of squared flooding errors [8]. 

 

 

Fig. 7.  Structure diagram for robot control. 

The task of this intelligent linearization controller is to 
modify the original robot system (21) in the following ways: 

( , ) ( , , ) ( , ) ( , )

dk du f

M q q H q q q G q f q   

 

  ɺɺ ɺ ɺ ɺ
 (21) 

Thus, (21) can be represented as (22) in a way that 
corresponds to the total noise, including the initial noise and 
the model line error: 

21 dkq A q A q U     ɺɺ ɺ    (22) 

where 1A , 2A  are two randomly generated matrices, and: 

   
 1

2( , ) ( , , )

    ( , )

ndf I M q q H q q A q

G q A q

  


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 

ɺɺ ɺ ɺ
 (23) 

The estimation errors for the new unknown function vector 
are updated, as shown below: 

ˆdkU         (24) 

with the estimation of bias   as (25), system (22) will become 

linear: 

   * , , *n nX A X B Y q I O X    ɺ   (25) 

with: 

1 2

ˆ, , ,
nn n

n

OO Iq
X A B

IA Aq
  

   
              
ɺ

ɺ
 (26) 

The compensation system in (25) should be regulated so 

that its result ( )Y t  is close to the desired reference value ( )R t . 

Linearized feedback allows for model-free noise correction in 
the inner control loop. Equation (24) and design as in the 

present case with * ; 0t k T T      and  ( )k k   , 

( )k kX X  , (25) is rewritten as: 

 ˆ( ) ( ) ( ) ( ) ( )k k k k kX AX B          ɺ  (27) 

The automatic model-free feedback linearization block 

(Figure 7) aims to estimate ̂  based on the measured values 

two times snT   and - ( -1)s st T T n  for each corresponding 

( )k sX nT ; ( 1)k sX n T  value. With 0 1sT   being an 

arbitrarily chosen constant small value, we expand the Taylor 

function ( )kX  of the function around ( 1) sn T as follows: 
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k s

k s k s k s
s

X n T

T
X T X nT X nT

 
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 (28) 
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s s(n -1)t nt 
 

or: 

 *( * ) * ( 1)*
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k s k s
k s

s

X n T X n T
X n T

T

 
ɺ  (29) 

Assuming that the last term of (28) is very small and can be 

ignored, the expression ˆ *( )k snT  will be used to approximate 

equation (29) by replacing the signs "  " and * ( )k snT  in 

(29) with "  " and *ˆ ( )k snT : 

 

 

( * ) * ( 1)*

( * )

ˆ( * ) * ( 1)* *( * )

k s k s

s

k s

k s k s k s

T

X n T X n T

AX n T

B n T n T n T  


 



    

 (30) 

From there, calculate: 
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B n T

T

A X n T B n T n T



 

 


     

 

 
ˆ *( * )

*( * ) * ( 1)*
* * ( * )

k s

k s k s
k s

s

n T

X n T X n TTB A X n T
T

 

  
 

 

 

 ˆ* ( * ) * ( 1)*k s k sn T n T        (31) 
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Theorem 1: The computed value *ˆ ( * )k sn t  in (31) 

reduces the approximation error in (30). 

Proof: Denote the error of both sides of (30) with: 

 
 

=

* ( * )

ˆ ˆ* *( * ) ( 1)* *( * )

*( * ) * ( 1)*
 * *( * )

k s

k s k s k s

k s k s
k s

s

A X n T

B n T n T n T

X n T X n T
B n T

T



  

 



     
 

 

 

where: 

 

 
 

*

     

ˆ* ( ) * ( * ) * ( 1)*

*( * ) * ( 1)*

k s k s k s

k s k s

s

A X nT B n T n T

X n T X n T

T

       
 


 

The optimization problem is therefore formulated as: 

2 2*
arg min arg min *

arg min * *

arg min * 2* * * *

k k

k

k

k k

T
k k

TT T T
k k k

B

B B

B

 





   

   

     

   

  

 

 

and has a unique solution 
*

*
TB    which coincides with 

ˆ *( * )k sn T  given in (31). 

According to (31), this estimation method, which is 
designed to account for disturbance and uncertainty in a vector 
model, doesn't employ the computational framework (21). As a 

result, the noise compensation (24) with ̂  calculated from (31) 

will be model-free. For iterative learning systems, it is 
rewritten in ILC language as follows: 

 ( 1) A* ( ) ( ) ( )

( ) * ( )

k k k k

k k

X n X n B i n

Y n C X n

      
 

  

⌢ ⌢

⌢  (32) 

where: 

10,1,....., / , ( ) (0)s k kn N T t X N X   
 

and: 

;A exp( ); e  C=(I ,O )
0

s

s n n

T
AtAt B Bdt  

⌢ ⌢⌢
 (33) 

The control objective at this point is to choose the proper 
learning parameter K for the PD-Type update rule: 

   1 *k kk n n K E       (34) 

with ( ) ( ) ( )k k kE n R n Y n  , to achieve the requisite agreement 

 ( ) 0kE n   for all n, or at least as close to the origin as 

possible. 

Given that ILC (34) is partially constant, the obtained 
discrete-time model in (36) is equivalent to the continuous-time 
model in (25). Therefore, (32) can be applied to all robot 
controllers. From (32), we obtain with the assumption 

( ) 0k n  : 

1
1

1 1 1
0

*ˆ ˆ ˆ( ) * (0) * * ( )
n

n n n
k k k

j
Y n C A X C A B j

  
  


    

Form (32) and the apparent display of repeatable 

competence 1(0) (0), kk kX X   : 

1 1

1
1

0

1
1

0

2
1

0

*( ) ( ) ( ) ( )

* (0) * *( ( ) * ( ))

ˆ ˆ( ) ( ) * * * ( )

ˆˆ ˆ( * * )* ( ) * * * ( )

k k

n
n n n

k k
j

n
n j

k k
j

n
n j

k k
j

E n R n Y n R n

C A X C A B j K E j

R n Y n C A B K E j

I C B K E n C A B K E j



 

  



  



  



   

 
  

 

   

   

⌢ ⌢ ⌢

 

Hence: 

1 *k kE E      (35) 

where: 

2 2

(0)

(1)
 

( 1)

ˆ 0 0

ˆ ˆ ˆ 0

ˆ ˆˆ ˆ ˆ



 

 
 
 
 
 

 

 
 
  

  
 
   

⋮

⋯

⋯

⋮ ⋮ ⋮ ⋮

⋯

k

k
k

k

N N

E

E
E

E N

I CBK

CABK I CBK

CA BK CA BK I CBK

 (36) 

Theorem 2: For circumstance ( ) 0k n  , the needs 

( ) 0kE j  for all 0,1,....., 1n N  will be fulfilled if and 

only if the P-Type training variable K is modified to produce 
the value provided in (32) Schur. 

A. Performance and Control Algorithms for a Closed-Loop 
System. 

The following method implements the suggested model-

free controller (24) by obtaining the  ,   values from (35). In 

this type of control technique, each cycle tests the robot work 
time T many times 

Theorem 3: The proposed model-free control architecture 
in Figure 1 includes feedback to the linearity block via the 
noise compensator (24), (31), and the ILC block (34). If d is 
restricted and continuous, this pushes the robot manipulators' 

(21) output error in tracking ( )kE   to a dependent 

neighbourhood   of origin. If a less significant option is 

picked, the  outcome will be small. 
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Proof: df  is continuous and bounded, and the total noise 

 and components   are also constant and bounded. The 

upper limit of   is  , and this limit can be reduced arbitrarily 

by reducing st according to Theorem 1. 

Therefore, the correctness of Theorem 2 is determined: 

 with ( , )A B vec R R      ɺɺ   (37) 

Subtracting (37) from (25) gets: 

 where ( , )A B vec E E      ɺɺ   (38) 

Select a function using Lyapunov's theory: 

( ) TV P    

(

( * * ) * ( * * )

  * * * ) 2* * *

T T

T T T

V A B P A B

A P P A P B

    

   

    

  

ɺ

 

2

 *( * * )* 2* * * *

  *( * * )* 2* * *max

T TT

T

A P P A P B

A P P A P B

   

   

    

    
 

= * ( * * )* 2* *max
TA P P A P B         (39) 

With max ( * * )TA P P A   ( ) 0V  ɺ as long as: 

max

max*

2* * * ( * * )

2 * *
 or 

( * * )

T

T

P B A P P A

P B

A P P A

  






  


 

 (40) 

2

max

2* *
*

( * * )

n

T

P B
R

A P P A


  



  
    

   
 (41) 

The control algorithm is as follows: 

Choose 2 matrices 1A , 2A  in (33) to become 

Hurwitz  

Calculate ,  ,  A B C
⌢⌢ ⌢
 in (33) and Φ  in (36. 

Find the estimated matrices ,  ,  A B C
⌢⌢ ⌢
 in (33) 

and Φ  in (36) 

Select 0 1sT  . Calculate / sS T T  

Select 1 0 1
1 ;

T T T

s
D D DT    in (31) 

Select learning μ̂  and 0E  

Allocate ( ) ( )J n R n  with 0,1,..., - 1n S  

and 0Z  . 

Identify learning parameter K so that Φ  

of (33) becomes Schur. 

While continue the control do 

For 0,1,..., 1n S   do 

1 2
ˆ

dku A q A q μ  ɺ  

( , )X vec E E ɺ , ( )Y n q  

ˆ ˆ* ( ( ) )
T

s

X Z
μ B A X n μk

t

 
    

 
  

Set Z X  

End for 

( (0),....., (N 1)), 

( (0),....., (N 1))

vec

E vec E E

 

 

  
 

 * *arg min Φ

a K b

K I K E
 

  

0* ;  ;K E E E     

End while 

To demonstrate the computation of the algorithm, it is 
properly applied to robot control as follows: 

With =0.02 ssT , 141n    are random, 10 sT = ; 

1 0.35l  , 2 0.55l  , 3 0.6l  , 9.81g   

1 2

3

3.2 3( ) sin( ) 0.3sin( ); ( ) sin( )

2 3( ) 2.5sin( ) 0.2sin( )

t t tR t R t
T T T

t tR t
T T

  

 

  

 
 

1 2

31 0 0 12 0 0 0.8 0 0

0 12 0 ; 0 8 0 ; 0 0.3 0

0 0 12 0 0 10 0 0 0.5

A A K

     
            
          

and the results are shown in Figures 8 through 10.  

Figures 8 to 10 show the positions of the three joints q1, q2 
and q3 and after 20 and 350 trials, respectively, when the 
iterative learning controller uses the 

 arg min * *
a K b

K I K E
 

   formula for the "intelligent" 

determination of the learning function  j
kK diag K . The 

highest value of the tracking error over the whole working 

duration in about 350 trials is 350max (1) 0.025E  for the first 

joint variable, 350max (2) 0.001E   and 350max (3) 0.022E 
for the second and third joint variables, respectively. 

 

 
Fig. 8.  Representation of the position of the first variable after 20 and 350 

trials. 
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Fig. 9.  Representation of the position of the second variable after 20 and 

350 trials. 

 

Fig. 10.   Representation of the position of the third variable after 20 and 

350 trials. 

IV. CONCLUSION 

The article discusses the implementation of the Li-Slotine 
adaptive control and the Iterative Learning Control (ILC) as an 
appropriate approach for the robot motion system, which 
involves uncertain model parameters and experiences 
undesirable interactions between joint axes. The primary 
findings are presented based on simulation and experimental 
outcomes. The recent theoretical study and experimental results 
indicate that the effectiveness of the Li-Slotine automated 
control method relies on the mathematical model's accuracy 
level. This enables us to develop a conventional controller to 
successfully achieve the desired results. Following an extended 
work period, the desired quality will alter the physical 
composition of the materials used to manufacture the controller 
and the actuator. As a result, the inadequacy of the initial 
mathematical model used to represent the object leads to a loss 
of accuracy, which degrades the control quality of the 
traditional controller. An intelligent control approach for 3-
degree-of-freedom robot motion systems that utilizes adaptive 
iterative learning and can operate with partial or no 
mathematical models, requires further refinement before it can 
be effectively implemented in practical applications. This 
outcome demonstrates that the ILC has provided the necessary 
tracking quality, and after 350 trials, the output signal has 

accurately tracked the reference signal across all three joint 
axes through the adaptive adjustment of two learning 
parameters, termed "smart". The following research direction 
will focus on improving the self-learning capabilities by 
combining ILC with deep learning or reinforcement learning 
algorithms so that robots can learn faster and more effectively 
from repeated data. 
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