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ABSTRACT 

Pneumonia remains a significant global health concern, necessitating efficient diagnostic tools. This study 

presents a novel Convolutional Neural Network (CNN) architecture, CuDenseNet, designed for the binary 

classification of Chest X-Ray (CXR) images as either having pneumonia or normal (healthy). Unlike 

models that rely on transfer learning from pre-trained architectures, CuDenseNet is trained from scratch 

and incorporates three parallel DenseNet paths of varying depths, enhancing feature extraction and 

classification accuracy. The model was evaluated on a combined dataset of 11,708 CXR images, achieving 

exceptional performance metrics of 99.1% accuracy, 99.7% precision, 99.1% recall, and an AUC of 99.7%. 

The comparative analysis demonstrates that CuDenseNet outperforms state-of-the-art pre-trained models 

such as VGG19 and ResNet50 while providing superior adaptability. These results underscore the 

potential of CuDenseNet as a robust and reliable tool for automated pneumonia diagnosis, with significant 

implications for clinical applications and future research in medical imaging. 

Keywords-deep learning; convolutional neural networks; chest X-ray images; pneumonia classification; image 

processing; Computer-Aided Diagnosis (CAD); health informatics; AI 

I. INTRODUCTION  

Machine Learning (ML) and Artificial Intelligence (AI) are 
revolutionizing nearly every aspect of modern life, from 
healthcare and transportation to finance and entertainment. 
These technologies allow machines to process vast amounts of 
data, identify patterns, and make decisions with minimal 
human intervention. By automating routine and complex tasks, 
AI and ML enhance productivity, reduce errors, and enable 
new capabilities that were previously unattainable. For 
instance, AI-driven diagnostics in healthcare have improved the 
accuracy and speed of disease detection. ML models also 
power personalized recommendations in e-commerce and 
streaming platforms, delivering more relevant and engaging 
user experiences [1-4]. 

Deep Learning (DL), a subset of ML, plays a 
transformative role in healthcare by enabling advanced data 
analysis and decision-making capabilities [5-7]. DL models, 
such as Convolutional Neural Networks (CNNs) and Recurrent 
Neural Networks (RNNs), excel at analyzing complex and 
high-dimensional data like medical images, genomic 
sequences, and Electronic Health Records (EHRs). For 
example, DL algorithms have been pivotal in improving the 
accuracy of diagnostic tools, such as identifying tumors in 
radiology scans, detecting diabetic retinopathy, and predicting 
cardiovascular risks. These systems often achieve or exceed the 
performance of human experts, offering faster and more 
consistent evaluations, which is critical in resource-limited 
settings or high-pressure environments. 

Pneumonia represents a significant global health challenge, 
being a leading cause of mortality, particularly among children 
under the age of five and the elderly. The diagnosis and 
management of pneumonia are critical for reducing its 
associated mortality and morbidity. In low-resource settings, 
the lack of accessible, cost-effective diagnostic tools 
exacerbates the challenge, as timely detection and intervention 
can significantly improve patient outcomes. Traditional 
diagnostic techniques for pneumonia, such as sputum culture, 
blood tests, and clinical examinations, often lack the speed and 
accuracy needed for early detection. Chest X-rays (CXRs) are 
widely employed for diagnosis due to their availability and 
cost-effectiveness. However, their interpretation relies heavily 
on skilled radiologists, making the process subjective and 
prone to errors, especially in resource-limited settings with 
fewer specialists. DL, particularly CNNs, has emerged as a 
transformative approach in medical imaging. Its capability to 
process complex, high-dimensional data enables automated and 
highly accurate diagnosis from CXR images. Unlike traditional 
methods, DL models can: 

 Reduce diagnostic errors: They offer consistency in 
interpretation, minimizing human-related variability. 

 Enhance speed: Automated analysis enables rapid 
screening, which is crucial during disease outbreaks or 
pandemics. 

 Address resource gaps: In settings with limited access to 
radiologists, DL systems can provide diagnostic support, 
democratizing healthcare access. 
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Given these factors, DL is particularly well-suited to tackle 
the challenges of pneumonia diagnosis, offering a scalable, 
efficient, and reliable solution. This study’s proposed 
CuDenseNet architecture exemplifies such potential by 
demonstrating superior performance metrics compared to 
existing methods, emphasizing its practical and clinical 
relevance in addressing the global burden of pneumonia. 

A. Problem Statement 

As an alternate diagnosis procedure for pneumonia, X-ray 
imaging technology has significant advantages over traditional 
testing techniques. These benefits include low operating costs, 
widespread availability of X-ray competencies, non-
invasiveness, compact computing complication, and apparatus 
straightforwardness. X-ray images may be a better alternative 
for extensive, easy, low-cost, and speedy identification of a 
pandemic such as COVID-19, heart failures, bone fractures, 
etc. [8]. Computer-controlled pneumonia detection systems 
have grown in popularity in recent years as a tool to improve 
the efficacy and cogency of medical services. DL techniques go 
further than traditional ML approaches for picture analysis in 
health utilizations such as following, labeling, and 
organization. 

Authors in [9] assessed the CNNs' efficiency in automating 
the classification of chest radiographs into binary data. Authors 
in [10] presented a unique hybrid method for identifying 
pulmonary disorders like pneumonia and lung nodules using 
modular artificial neural networks and fuzzy logic. Authors in 
[11] proposed and validated a mix of radionics and ML features 
for early and rapid COVID-19 diagnosis from CXR in the 
presence of viral or bacterial pneumonia and at varied sickness 
severity levels. In [12], Transfer Learning (TL) is used to 
generalize information from a large set of unlabeled Synthetic 
Aperture Radar (SAR) scene photos to labeled target data. 
Authors in [13], motivated by the fact that X-ray imaging 
systems are more prevalent and cheaper than CT scan systems, 
a DL-based CNN model, Truncated Inception Net, was 
proposed to screen COVID-19 positive CXRs from other non-
COVID and/or healthy cases. Authors in [14] used CXR scans 
from people with normal bacterial pneumonia, confirmed 
COVID-19 infection, and normal occurrences to automatically 
diagnose the Coronavirus disease. 

Pre-trained CNN models include VGG19 [15], MobileNet 
v2 [16], Inception [17], Xception [18], and Inception ResNet 
v2 [17]. To this end, authors in [19] present an ensemble model 
developed through the joint effort of three separate TL models: 
EfcientNet, GoogLeNet, and XceptionNet. Using DCNN-based 
pre-trained TL models and CXR pictures, authors in [20] 
presented an automatic Computer-Aided Diagnosis (CAD) 
prediction model consisting of CXRs from healthy individuals, 
COVID-19 patients, and those infected with bacterial and viral 
pneumonia. The authors used pre-trained models of the 
ResNet50, ResNet101, ResNet152 [21], InceptionV3, and 
InceptionResNetV2 architectures to improve prediction 
accuracy on three separate binary datasets. In [22], features 
were extracted from CXR images using the pre-trained network 
DenseNet169, whereas XGBoost (eXtreme Gradient Boosting) 
was used to categorize some of the chosen features. The 
proposed approach was trained and tested using the ChestX-

ray8 dataset [23]. AI was studied in [24] to see if it could be 
helpful in the quick and precise diagnosis of pneumonia from 
CXRs. This study aims to offer a reliable method for automatic 
pneumonia detection from digital CXRs using pre-trained DL 
algorithms to optimize detection accuracy. MobileNetv2, 
SqueezeNet [25], ResNet18, ResNet101, and DenseNet201 
were evaluated experimentally. Authors in [26] deployed 
CheXNet for pneumonia classidfication from CXR images. 
The work presented in [27] applies a DL method based on a 
pre-trained AlexNet structure for categorizing CXR scans 
received from various public databases. 

Sequential CNNs create both phases of the architecture in 
[28]. Phase 1 classifies data as COVID or NON-COVID, while 
phase-2 classifies NON-COVID pictures as normal or having 
pneumonia. Two models were proposed in [29] for binary and 
three-class classifications. The authors recommend a CNN for 
COVID-19 identification in the case of binary categorization. 
Authos in [31] utilized five pre-trained models (InceptionV3, 
NASnet [30], Xception, MobileNetV2, ResNet101) integrated 
through TL into the EL model for Covid-19 and pneumonia 
classification in a system called InstaCovNet-19. Authors in 
[32] studied the application of DL for detecting COVID-19 
based on CXR images. Authors in [33] specifically employed 
CNNs and ANNs. This research suggests two distinct methods, 
each involving two separate systems, for identifying 
tuberculosis in two separate data sets. Authors in [34] tried to 
offer a DL solution that utilizes the integration of Xception-NN 
and LSTM that can achieve automated detection of individuals 
with pneumonia in CXRs. Authors in [35] offered a DL 
architecture to investigate pneumonia and lung cancer. Its 
efficacy was further verified by comparison to other pre-trained 
DL methods like AlexNet [36], VGG16, VGG19, and 
ResNet50. Authors in [37] used data from a database 
containing the results of 35,038 posterior-anterior CXRs and 
finalization conducted on adults between 2005 and 2015. 
GoogLeNet-CNN was trained on 3 GPUs to reliably diagnose 
cardiomegaly and other conditions based on CXRs. With 19 
layers in the base model and relatively small ConvL filters (3-
by-3), the model proposed in [38] was developed to distinguish 
pneumonia, COVID-19, and healthy cases using VGG-19 as a 
base, and the weights were adjusted using the ImageNet setup. 
The CNN model in [39] uses separable convolution for all 
ConvLs except the first. Its separability distinguishes it from 
the classical convolution. Depth and point convolution include 
separable convolution. Feature extractors and a classifier 
comprise most of the suggested CNN model design in [40]. It 
uses four ConvLs in a sequential design with the classifier 
located at its end. A new hybrid approach for CXR-based 
pneumonia diagnosis was proposed in [41] that used an 
adaptive median filter and the RF (ACNN-RF).  

Motivated by the shortcomings of the studies mentioned 
above, it was found that the training from scratch has not been 
fully investigated, and most of the state-of-the-art 
methodologies are based on pre-trained models. The proposed 
models are very simple, therefore they cannot be generalized 
due to unrealizable results. Consequently, in this work, a novel 
CNN structure, based on the DenseNet model, is introduced 
and trained from scratch. In other words, the structure is a 
Customized DenseNet (CuDenseNet) model. The conventional 
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DenseNet consists of a single path from the input to the output, 
while the CuDenseNet consists of three parallel DenseNet 
paths, each with a different depth. Hence, to introduce 
CuDenseNet confidently, conventional DenseNet should be 
introduced first.  

B. Paper Contribution 

This paper introduces several significant contributions to 
the field of medical imaging and automated pneumonia 
diagnosis, establishing CuDenseNet as a valuable advancement 
in DL for medical imaging, paving the way for further research 
and application in related domains. The main contributions of 
this paper are: 

 Novel CNN Architecture: The study presents 
CuDenseNet, a custom-built CNN specifically designed for 
binary classification of CXR images. Unlike traditional 
approaches, CuDenseNet is trained from scratch, enabling 
greater adaptability and targeted performance. 

 Innovative Multi-Path Design: The CuDenseNet 
architecture incorporates three parallel DenseNet paths of 
varying depths, which enhance feature extraction and 
improve classification accuracy compared to standard 
single-path networks. 

 High-Performance Metrics: The proposed model achieved 
exceptional results demonstrating its effectiveness and 
reliability for pneumonia detection. 

 Comparison with State-of-the-Art Models: The study 
provides a thorough comparative analysis, showing that 
CuDenseNet outperforms pre-trained models such as 
VGG19 and ResNet50, offering superior adaptability and 
efficiency. 

 Comprehensive Dataset Utilization: The model was 
evaluated on a large combined dataset of 11,708 CXR 
images, ensuring robustness and generalizability. 

 Practical and Clinical Relevance: The study highlights 
CuDenseNet’s potential as a useful tool for automated 
pneumonia diagnosis, with implications for enhancing 
clinical workflows and supporting healthcare professionals 
in resource-limited settings. 

II. THE PROPOSED MODEL 

The structure of the proposed model is based on the 
conventional DenseNet model. The proposed model consists of 
three parallel paths of different depths of DenseNets, as shown 
in Figure 1. The first path, which is the longest, involves 96-
ConvLs, the second path has 40-ConvLs, and the third path 
consists of 31-ConvLs. Figure 2 shows the Dense-Block, which 
consists of six layers, starting with BchNL followed by ReLU, 
ConvL, BchNL, ReLU, and ConvL, respectively. Figure 3 
shows the main part from which the paths are constructed. The 
first ConvL in the Dense Block has a kernel size of 1-by-1, 
while the second ConvL is adjusted with a kernel size 3-by-3.  

Figure 3 shows the construction of the first path, in which 
the first layer is the input layer, followed by ConvL(wi, hi, fi, 
wo, ho, fo), where wi, hi, and fi are the input width, height, and 

number of filters, respectively, and wo, ho, and fo are the output 
width, height, and number of filters, respectively. wi, hi, fi, wo, 
ho, and fo are 150, 150, 3, 75, 75, and 64, respectively. After 
that, PoL is followed, which will reduce the output FM 
dimensions by a factor of 2. Thus, the output FM is (wo =38, ho 
=38, fo =64). Note that the output number of filters will not be 
affected. The previous operations can be considered as the 
input block. The following are the main model operations, 
which are combinations of dense blocks and transition blocks. 
The input dimensions to the Dense-Block is equal to the 
previous dimensions. However, the number of filters will 
summate the last two consecutive Dense-Blocks, while the 
outputs are: wo = 38, ho = 38, fo = 32). The previous procedure 
continues to span a total of 14 Dense-Blocks. Then, the first 
transition block is reached (see Figure 4). The Transition-Block 
input layer is BchNL, followed by ReLU and ConvL(wi, hi, fi, 
wo, ho, fo). Next will be the AvgPL with stride = 2 steps. 
Therefore, the output dimensions of the transition block will be 
divided into two parts, wo = wi/2 and ho = hi/2, while the 
number of filters will not be changed. 

 

 
Fig. 1.  General proposed methodology structure. 

 
Fig. 2.  Dense-block structured with six layers. 
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Fig. 3.  First path construction of the proposed model. 

 
Fig. 4.  Transition--Block structure, showing input and output dimensions. 

The output block contains the (Global Average Pooling 
Layer GAPL) and and the DnsL, also known as the 
classification layer, as shown in Figure 5. The GAPL has a 
special function. To understand it, it is necessary to understand 
the flatten-layer function. Every tensor can be flattened into a 
one-dimensional version while retaining its original values 
using the Flatten Layer function. For instance, if you have a 
tensor with the values (samples, 55, 55, 64), you can write it as 
(samples, 55 * 55 * 64). Overfitting to the training data is 
possible in such a structure. DropLs can prevent overfitting in 
practice. For once, GAPO breaks the mold. Only the spatial 
dimensions are pooled down to an average value of 1, while all 
other dimensions are left alone. For instance, the tensor 
(samples 55, 55, 64) would produce the following result: 
(samples 1, 1, 64). 
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Fig. 5.  Output-Block structure. 

 
Fig. 6.  Whole first-path architecture. 

Consequently, the second path consisted of 6-Dense-
Blocks, Transition-Block, 4-Dense-Blocks, Transition-Block, 
6-Dense-Blocks, Transition-Block, and 2-Dense-Blocks. In 
contrast, the third path (last) is structured as: 4-Dense-Blocks, 
Transition-Block, 3-Dense-Blocks, Transition-Block, 2-Dense-
Blocks, Transition-Block, and 4-Dense-Blocks, as shown in 
Figure 7. The first path has 95-ConvOs, the second has 39-
ConvOs, and the third has 30-ConvOs. Further, there are three 
transition blocks in each path and one GAPL at the end of each 
path. These three paths will be concatenated and forwarded to 
the classification layer (Dense). Hence, there are 173 
convolutional operations in the suggested model, 164 in the 
Dense-Blocks, and 9 in the Transition-Blocks. 

A. Confusion Matrix and Performance Criteria 

Classifier performance may be precisely evaluated using a 
Confusion Matrix (CM). The entire set of diagonals represents 
the successfully predicted results. The CM's off-diagonals show 
the misclassified results. To this end, the optimal classifier will 
have a CM consisting entirely of diagonal entries and zeros for 
all other elements. After the classification procedure, the actual 
and anticipated values are produced in a CM. Using the matrix 
numbers, one may evaluate the system's efficiency. Table I 
shows the CM for the two-class classifier [42]. 

TABLE I.  CONFUSION MATRIX ORGANIZATION 

 
Predicted 

Positive Negative 

Actual 
Positive True-Positive False-Negative 

Negativee False-Positive True-Negative 

 
Fig. 7.  The whole system structure involving three densely connected 
paths. 

One way to evaluate various systems' efficacy is by 
accuracy (ACC). It considers the sum of the classifier's correct 
predictions [40]. In (1)-(4), TP, TN, FP, FN represent True 
Positive, True Negative, False Positive, and False Negative 
classifications, respectively. 

ACC � �����

�����������
    (1) 

Recall (Rc) or Sensitivity measures how often positive 
inputs are accurately identified [42]: 

Rc � ��

�����
     (2) 

The accuracy of an algorithm is measured by with a certain 
level of certainty, or 

Precision (Prc) measures how many examples an algorithm 
predicts correctly as positive [42]: 

Prc � ��

�����
     (3) 

Area Under the Curve (AUC) is the area aunder the TP 
rate-FP rate Figure. The bigger its value, the better the model. 
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B. Methodology Workflow and Dataset Description 

The methodology workflow can be seen in Figure 8. 

 

 
Fig. 8.  Implemented methodology workflow. 

The dataset employed in this work is a combination of two 
separate datasets, each containing two distinct classes, labelled 
as Pneumonia and Normal. The first data set contains 5852 
(1581 Normal/Healthy and 4271 Pneumonia) CXR samples 
[43] and the second 5856 (1583 Normal and 4273 Pneumonia) 
[44], in a total of 11708 CXRs. The total Normal CXRs in the 
combined dataset are 3164, while the total number of 
Pneumonia CXRs are 8544, as shown in Table II. Table II and 
Figure 8 show the imbalance between the two classes as 
72.98% of the combined datasets belong to the pneumonia 
class and only 27.02% belong to the normal class, (Figure 10). 
This imbalance will be treated in the subsequent section, which 
is an essential step to get an unbiased model. Figure 11 shows 
25 randomly selected samples from the combined dataset. 

TABLE II.  UTILIZED DATASET STATISTICS 

Dataset Normal Pneumonia Total 

First 1581 4271 5852 

Second 1583 4273 5856 

Total 3164 8544 11708 

 

 
Fig. 9.  Distribution of normal and pneumonia classes in the datasets. 

 
Fig. 10.  Total distribution of normal and pneumonia classes. 

 
Fig. 11.  Samples of the combined dataset. 
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C. Classe Imbalance Processing 

The Class Imbalance issue troubles the majority of ML/DL 
classification tasks. It happens when one or more classes 
(majority classes) appear more frequently than the other classes 
(minority classes). So, there is a bias toward the majority class. 
In most ML techniques, it is assumed that the data are evenly 
distributed across all classes. When a model is trained on a 
dataset with an uneven distribution of classes, the results tend 
to favor the majority classes. The model improves its 
performance when it has access to a larger pool of training 
data, but struggles to pick up on relevant patterns that would 
help it learn the minority classes when fewer instances are 
available. 

Let us examine this in greater detail. Assuming we had 
applied a standard cross-entropy loss to each category. One 
may remember that the ith training data case's contribution to 
the cross-entropy loss is [45]: 

L�������������x�� �  

−�y� log�f�x��" + �1 − y�� log�1 − f�x��"" (5) 

where yi is the label, xi is an input feature, and f(xi) is the 
model's output probability that the feature is positive. Observe 
that only one of these variables contributes to the loss for any 
given training scenario, as yi = 0 or (1 – yi) = 0. At the same 
time, the other component is scaled by zero, thus becoming 
zero. For all N training samples, the average cross-entropy loss 
is: 

L�������������D� �  

− &

�
�∑ log�f�x��"������() +,-�.)� +

∑ log�1 − f�x��"�)/,��() +,-�.)� "        (6) 

where D is the training dataset. With this formulation, we can 
see that the loss will be influenced by the negative class if there 
is a significant imbalance, such as when there are relatively few 
positive training cases. When we calculate the contribution of 
each class (positive or negative) across all training samples, we 
get: 

Frequency������() � ���.�6-7)� �8 ������() +,-�.)�

�
 (7)   

Frequency�)/,��() � ���.�6-7)� �8 �)/,��() +,-�.)�

� 
 (8) 

Figures 10 and 11 demonstrate that the Pneumonia cases 
are more than the Normal instances. To ensure that the overall 
contribution from each class is equal, one method is to multiply 
each example by a weight factor that is specific to that class 
[45-48]: 

w�) × Frequency�)/,��() �  

                  w�� × Frequency������()   (9) 

where w�)  and w��  are the negative and positive weights of 
negative and positive classes, respectively. Equating the 
positive weight to the negative frequency and vice versa is 
easy: 

w�� � Frequency�)/,��()   (10)  

w�) � Frequency������()   (11) 

In this approach, both positive and negative labels will be 
equally represented. Once the weights are calculated, the 
weighted loss for each training case is: 

L������������
; �x� �  

−�w��y log�f�x�" + w�)�1 − y� log�1 − f�x�"" (12) 

Hence, no biasing/skewing appears in the trained model. 
Therefore, the next step of the methodology can be conducted 
easily.  

D. Data Augmentation and Splitting 

Data augmentation artificially increases the amount of data 
by creating new data points from preexisting data.  

1) Preprocessing Steps 

The following preprocessing steps were applied to the 
dataset to standardize the inputs: 

 Normalization: Pixel values of all images were scaled to the 
range [0, 1], ensuring uniform input features across the 
dataset. 

 Resizing: Each image was resized to 120×120 pixels, 
maintaining a consistent input size for the DL model. 

 Flipping: Images were flipped horizontally and vertically to 
augment the data and simulate variations in image 
orientation. 

2) Data Augmentation 

Data augmentation was employed during the training phase 
to improve model robustness and mitigate the impact of class 
imbalance. Specific augmentation techniques included: 

 Random rotations and shifts: These transformations 
simulated positional variations and ensured the model could 
generalize to different orientations. 

 Intensity adjustments: Random modifications to brightness 
and contrast were applied to account for variations in 
imaging conditions. 

3) Addressing Class Imbalance 

The significant imbalance between normal and pneumonia 
cases required targeted handling to prevent model bias: 

 Weighted loss function: A weighted binary cross-entropy 
loss was employed, with class weights calculated as the 
inverse of class frequencies. 

 Weight factors: Based on the dataset distribution and (10) 
and (11), weights of 1.84 and 0.69 were assigned to the 
normal and pneumonia classes, respectively. 

Moreover, the whole dataset was split into 70% and 30% 
groups for the training and testing phases, respectively. 

E. Model Training and Hyperparameter Settings 

Essential parameters should be set before initiating the 
training of the model. For instance, the loss function is Binary 
Cross-Entropy since the model should classify binary values, 
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(Normal / Pneumonia). The classification layer in the model is 
sigmoid for the same reason. The selected optimizer was the 
RMSprop (Root Mean Squared Propagation). RMSprop is an 
optimization method based on gradients used to train neural 
networks. As the data move through a complex function, like a 
neural network, the gradients disappear or blow up (vanishing 
gradients problem). RMSprop solves this problem by 
normalizing the gradient using a moving average of squared 
gradients. This normalization keeps the step size (momentum) 
in check by making the step smaller for large gradients so they 
don't explode and bigger for small gradients so they don't 
disappear. Simply put, RMSprop does not treat the learning 
rate as a hyperparameter, but uses an adaptive learning rate. 
This means that the learning rate changes as time goes on.  

The performance metrics were Acc, Pr, Rc, and AUC. 
During the training operation, the system will monitor the 
validation loss. The full number of epochs was set to 100 with 
327 steps per each epoch. However, the system may reach the 
optimal state before spanning all 100 epochs. Therefore, some 
criteria must be set to stop the training phase when achieving 
the best situation. Such criteria (callbacks) are the Reduce-
Learning-Rate (RLR), Model-Check-Point (MCP), and Early-
Stopping (ES). The learning rate initiates at 0.001 and 
decreases gradually by a factor of 0.05 with steps of 2 epochs 
until reaching the minimum learning rate, which is 1×10-9.  

MCP is a Keras callback used to store model weights or the 
complete model at a specified frequency or whenever a 
quantity (training loss) is optimal compared to the previous 
epoch/batch. During training, MCP records the model's weights 
or the complete model. It lets us specify a quantity to track, 
such as loss or accuracy on a training or validation dataset. 
When the monitored metric is optimal compared to the 
previous epoch or batch, it can automatically store the model 
weights or the entire model. Model weights or the full model 
are saved in two formats: 'tf' and 'h5'. The MCP callback is 
configured to activate whenever the model's validation loss 
improves compared to its previous value. Table III lists all the 
parameters and hyperparameter settings. 

TABLE III.  SETTINGS OF THE PROPOSED MODEL 

Hyperparameter Settings 

Splitting Train: 70%, Test: 30% 
Initial learning rate 0.001 

Optimizer RMSprop 
Activation function Sigmoid (for binary classifications) 

Loss function Binary Cross Entropy 
Epoch number 100 
Batch size NB 25 (due to memory concerns) 

Steps per epoch Number of training samples/ NB = 327 
Total trainable parameters 6,451,329 

 

On the other hand, the structured system has to be set in 
terms of initialization and number of trainable parameters. For 
instance, in each path's first layer, the ConvL, has been 
initialized differently. The first path’s kernel was initialized 
with zero mean and unity-standard deviation. The second 
path’s ConvL initialized with mean = 0.002 and standard 
deviation of 1.002. The last path’s first ConvL was initialized 
with mean = 0.003 and a standard deviation of 1.003. This 
different initializations were conducted to ensure that each path 

will be uncorrelated with the others and the collected 
information will vary from one path to another. Furthermore, 
the kernel size settings of the ConvLs were adjusted as the first 
ConvL (after the input) has 7-by-7 width and height, stride = 2, 
and the same padding. This applies to the other two paths of the 
system. Moreover, the kernel sizes of the Dense-Block are 1-
by-1 and 3-by-3 for the first and second halves of the Dense-
Block ConvLs, respectively.  

III. RESULTS AND DISCUSSION 

Although the proposed model is based on the standard 
DenseNet model, the system was trained from scratch. 
Therefore, the training dataset may not be sufficient and data 
augmentation operations were utilized. The implementation 
was achieved on the Kaggle.com website, which used its 
supporting GPUs, RAM, and CPUs. Figure 12 shows the 
model loss performance, showing that the lowest validation 
loss occurrs at epoch 14, which was 0.04028. However, at this 
epoch, the training loss was 0.00393. The accuracies at this 
point are 0.99853 and 0.99114 for the training and validation, 
respectively. 

 

 
Fig. 12.  Model loss performance plot after excluding first and second 
epochs. 

 
Fig. 13.  Model accuracy performance. 

Figure 13 shows the accuracy of the proposed structure. 
The validation accuracy is highest at epoch-24 (0.99143). 
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Nevertheless, the system’s overall epoch setting was 100, but 
the training operation stopped early at epoch 24. The system 
did not improve for the next 10 epochs, as it was set in the ES 
callback. At epoch-24, the measure metrics for the training 
phase, namely loss, accuracy, precision, recall, and AUC were 
0.00083, 1.00, 1.00, 1.00, and 0.999999, respectively. While 
for the validation phase, loss, accuracy, precision, recall, and 
AUC were: 0.04984, 0.99143, 0.99686, 0.991399, and 
0.995498, respectively, as shown in Table IV. But at epoch-14, 
the measures for the training were 0.00393, 0.99853, 0.99966, 
0.99832, and 0.99999 for the loss, accuracy, precision, recall, 
and AUC, respectively and the corresponding validation 
metrics were 0.04028, 0.99114, 0.99686, 0.99102, and 
0.99675, respectively, as shown in Table V. Most metrics at 
epoch 24 performed better, but not the loss, which was the 
monitoring metric during training. See Table VI for a detailed 
comparison.  

TABLE IV.  METRIC MEASURES AT EPOCH NUMBER 24 

Metric Value 

Train loss 0.00083 
Validation loss 0.04984 

Train ACC 1.00 
Validation ACC 0.99143 

Train Prc 1 
Validation Prc 0.99686 

Train Rc 1 
Validation Rc 0.991399 

Train AUC 0.999999 
Validation AUC 0.995498 

TABLE V.  METRIC MEASURES AT EPOCH NUMBER 14 

Metric Value 

Train loss 0.00393 
Validation loss 0.04028 

Train ACC 0.99853 
Validation ACC 0.99114 

Train Prc 0.99966 
Validation Prc 0.99686 

Train Rc 0.99832 
Validation Rc 0.99102 

Train AUC 0.99999 
Validation AUC 0.99675 

TABLE VI.  COMPARISON OF METRIC MEASURES AT 
EPOCHS 14 AND 24 

Metric 

Value 

Training Validation 

Epoch 14 Epoch 24 Epoch 14 Epoch 24 

Loss 0.00393 0.00083 0.04028↓ 0.04984↑ 
ACC 0.99853 1 0.99114↓ 0.99143↑ 
Prc 0.99966 1 0.99686 0.99686 
Rc 0.99832 1 0.99102↓ 0.991399↑ 

AUC 0.99999 0.99999 0.99675↑ 0.995498↓ 
 

The learning rate hyperparameter (Table ΙΙΙ), was set to 
0.001. As mentioned above, the learning rate should be reduced 
during the training operation to avoid overfitting problems. 
This is achieved, as shown in Figure 14. The validation loss 
was improved during the first 10 epochs and did not stop 
improving during two consecutive epochs, therefore, the 
learning rate did not reduce. Nevertheless, during epochs 9 and 

10, the validation loss did not show improvement. Thus, the 
learning rate was reduced at epoch-11 to 5×10-5. The next 
reduction occurred at epoch 17 because the validation loss did 
not enhance during the previous two consecutive epochs. More 
reductions were conducted, epochs 19, 21, and 23. The training 
operation should be terminated since no improvement was 
completed in the validation loss from epoch-14 for 10 
consecutive epochs to epoch-24. Because the ES callback 
patience/waiting was set to 10 epochs, the system training 
process had to stop at this point. 

 

 
Fig. 14.  Learning rate reduction during training. 

At this point, the system has reached its best situation 
without spanning 100 epochs. Consequently, this best system 
situation was stored, which is at epoch-14, to be used for the 
prediction operation in the future. Accordingly, the system was 
used to predict the classes of the CXRs on the testing dataset. 
This dataset contained 3513 samples, which were fed to the 
trained model. The results can be seen in Table VII. The loss, 
accuracy, precision, recall, and AUC values for the new CXRs 
can be considered quite satisfactory when compared to those 
obtained in the literature. Although the trained model was 
never tested on the test dataset, the results matched those 
obtained for the training-validation set, as listed in Table VII. 

TABLE VII.  PREDICTION RESULTS COMPARISON BETWEEN 
NEVER-SEEN AND TEST-SET CXRs 

Metric Training – epoch 14 
Validation – 

epoch 14 
Testing 

Loss 0.00393 0.04028 0.0261 
ACC 0.99853 0.99114 0.9968 
Prc 0.99966 0.99686 0.9949 
Rc 0.99832 0.99102 1.0000 

AUC 0.99999 0.99675 0.9978 

 
The proposed network in this work achieved improved 

results compared to other known models. Since the work in 
[22] relied on a pre-trained network of 169 layers called 
DenseNet169, our network's results can be considered as an 
improvement. In addition, the work in [49] had a 0.924 
classification accuracy, whereas [14] had a 0.934 accuracy, as 
can be seen in Figure 15. 
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Fig 15. Accuracy comparison with other works. 

TABLE VIII.  MODEL PERFORMANCE COMPARISON 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

AUC 

(%) 

Proposed 
CuDenseNet 

99.1 99.7 99.1 99.7 

DenseNet169 
(pre-trained) [22] 

92.8 93 92.5 93.2 

ResNet50 (pre-
trained) [49] 

92.4 92.5 92 92.8 

VGG19 (pre-
trained) [14] 

93.4 93.5 93 93.8 

InceptionNet 
(pre-trained) 

94.7 95 94.5 95.2 

 

A. Limitations 

While the proposed CuDenseNet model demonstrates 
outstanding performance, it is essential to consider certain 
limitations and areas for future improvement. 

1) Dataset Bias 

The combined dataset used in this study focuses on binary 
classification (normal vs. pneumonia). This potential bias limits 
the model’s exposure to other conditions such as tuberculosis, 
lung cancer, or COVID-19. The imbalance between the two 
classes (72.98% pneumonia, 27.02% normal) could also impact 
the model’s generalization ability. 

2) Generalizability 

The model’s performance has been validated on a specific 
dataset. Its applicability to other datasets, imaging modalities, 
and diverse patient demographics (e.g. variations in age, 
gender, or geographic regions) was not considered in this 
paper. This raises concerns about its robustness in real-world 
clinical settings. 

3) Computational Constraints 

Training the CuDenseNet model from scratch required 
substantial computational resources. This may limit the study's 
replicability for research groups or healthcare institutions with 
restricted access to high-performance computing infrastructure. 

B. Future Research Directions 

1) Multiclass Classification 

Extending the model to classify multiple chest diseases 
would significantly enhance its clinical utility. A multiclass 
approach could provide a comprehensive diagnostic tool. 

2) Transfer Learning 

Investigating TL techniques could help leverage pre-trained 
models for other datasets or imaging modalities, particularly 
when labeled data is scarce. This approach could also reduce 
computational demands. 

3) Cross-Dataset Validation 

Future studies should evaluate the model’s performance on 
datasets from different sources to ensure its robustness and 
generalizability. Cross-institutional collaborations could help 
benchmark its reliability across various clinical settings. 

4) Computational Efficiency 

Developing lightweight and optimized model versions 
could reduce training and inference times. This would make the 
model more accessible for deployment in resource-limited 
settings. 

IV. CONCLUSIONS  

Medical imaging requiring efficient automated tools is 
critical for early disease diagnosis, especially in the case of 
pneumonia. This study introduces a novel DenseNet-based 
CNN model, CuDenseNet, tailored for binary classification of 
CXR images, trained from scratch. Unlike existing approaches 
relying on pre-trained models, CuDenseNet employs a custom 
architecture with three parallel DenseNet paths, enhancing 
feature extraction and classification accuracy. Key findings 
include: 

 Exceptional performance metrics values: Accuracy: 99.1%, 
Precision: 99.7%, Recall: 99.1%, AUC: 99.7% 

 Robust generalizability. 

Compared to state-of-the-art models like VGG19 and 
ResNet50, CuDenseNet offers superior adaptability and 
independence from pre-trained weights. This model also 
matches or exceeds the performance of works such as [44] 
while introducing a novel three-path architecture for enhanced 
accuracy. 

In conclusion, CuDenseNet demonstrates the effectiveness 
of training CNNs from scratch for pneumonia detection, 
providing a reliable tool with significant implications for 
clinical use and future AI research. Further studies may explore 
its scalability and application in broader medical imaging tasks. 
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