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ABSTRACT 

Soft sensors in oil refineries provide operators with important insights into the behavior and performance 

of processes using real-time and historical data to generate predictions. This data-driven strategy makes it 

easier to make wise decisions for detecting faults, thus improving process optimization and control. The 

Crude Distillation Unit (CDU) imposes very harsh working environments for measuring instruments, 

imposing both the use of a very robust sensory system and periodic maintenance procedures, which are 

time-consuming and costly. Notwithstanding such precautions, faults in those measuring devices, such as 

temperature and pressure sensors, still occur, and the presence of a sensor fault deteriorates the efficiency, 

productivity, and reliability of the refinery process. Recent works focused only on some fault types (e.g., 

bias and drift), ignoring others. This study presents the design of a soft sensor to detect all possible fault 

types in the real-time processing of an oil refinery. This method used actual data collected from the 

Salahuddin oil refinery in Iraq, several preprocessing methods, and a machine-learning approach. The 

proposed soft sensor was designed using several stages, including data collection, preprocessing, clustering, 

and classification. In the classification stage, an approach based on a Bagged Decision Tree (BDT) and 

Support Vector Machine (SVM) was implemented to classify the detected faults. The proposed soft sensor 

was trained and tested using actual data, achieving a high fault detection and classification result of 

99.96%. 

Keywords-oil refinery; soft sensor; machine learning; BDT; SVM 



Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 20425-20432 20426  
 

www.etasr.com AlRijeb et al.: Machine Learning-Driven Soft Sensor Implementation for Real-Time Fault Detection in … 

 

I. INTRODUCTION  

Distillation columns are crucial components in various 
industries, particularly in chemical and petrochemical 
processes, where they are used to separate mixtures into 
individual components based on differences in boiling points. 
The complexity of distillation columns arises from the 
interconnected variables involved in the process, which include 
temperature, pressure, flow rates, and feed composition [1, 2]. 
The achievement of specific objectives, such as product purity, 
operational continuity, and stable operating regimes, requires 
careful design and control of distillation processes. However, 
maintaining these objectives can be challenging due to various 
factors, including human error and equipment failure [3, 4]. 
Human error is a significant contributor to industrial accidents, 
accounting for more than 70% of such incidents [5, 6]. Errors 
in the operation, monitoring, and decision-making can cause 
disruptions in the distillation process, compromising safety and 
efficiency. Moreover, failures in physical components, such as 
sensors and actuators, can disrupt the operation of distillation 
columns [5-7]. These components are crucial for monitoring 
and controlling the various parameters within the column. 
Malfunctioning sensors or actuators can lead to inaccuracies in 
data collection and control actions, thereby impacting the 
overall performance of the distillation process. In addition to 
physical component failures, issues with data collection and 
monitoring systems can also affect the reliability of the 
distillation columns. Failures in these systems can result in a 
lack of real-time data and insights into the process, making it 
difficult to identify and address potential issues before they 
escalate [8-12]. 

To mitigate the risks associated with human errors and 
equipment failures, industries often implement robust safety 
protocols, regular maintenance schedules, and advanced 
monitoring and control systems. Additionally, ongoing training 
and education for operators can help reduce the likelihood of 
errors and improve the overall reliability of the distillation 
processes. However, in recent years, soft sensors have been 
used to address these failures, without human intervention. The 
integration of soft sensors has emerged as a pivotal paradigm 
for process monitoring and control. Unlike conventional 
sensors, soft sensors harness computational models to estimate 
and predict unmeasured or difficult-to-measure process 
variables, thereby contributing to enhanced system 
observability and control accuracy. This paradigm shift holds 
significant promise in various industries such as chemical 
engineering, manufacturing, and environmental monitoring. 
The reliance on soft sensors is rooted in the ever-growing 
demand for real-time, accurate, and cost-effective monitoring 
solutions. As traditional sensors face limitations in terms of 
robustness, maintenance, and adaptability to dynamic 
processes, soft sensor deployment addresses these challenges 
by leveraging advanced algorithms and machine-learning 
techniques. Integration of soft sensors marks a significant step 
towards intelligent and adaptive monitoring systems. The 
results of this research not only contribute to the academic 
understanding of soft sensors but also hold the promise of 
fostering innovation and optimization in industrial processes. 

In the era of Industry 4.0, where data-driven decision-
making is paramount, the role of soft sensors has become 
increasingly indispensable. The need for reliable and adaptive 
monitoring tools increases as manufacturing and industrial 
processes become more complex. Soft sensors not only bridge 
the gap in instances where physical sensors fail but also exhibit 
a remarkable capacity to adapt to evolving process dynamics. 
This adaptability is facilitated by their ability to assimilate and 
learn from large datasets, thereby enabling a proactive response 
to variations and disturbances in real time. The core of soft 
sensor technology lies in its ability to infer unmeasured 
variables by exploiting correlations within existing process 
data. Machine learning algorithms, including neural networks, 
Support Vector Machines (SVM), and Bayesian networks, 
form the foundation of these sensors, allowing them to decipher 
complex patterns and relationships. This study investigates the 
intricacies of these algorithms, shedding light on their 
applicability, limitations, and potential refinements in various 
industrial contexts. Furthermore, the economic implications of 
soft sensors cannot be easily estimated. The reduced 
dependence on physical sensors not only reduces upfront 
installation costs but also alleviates the burden of maintenance 
and calibration. As industries navigate toward sustainability 
and cost-effectiveness, the integration of soft sensors aligns 
seamlessly with these objectives, positioning itself as a 
sustainable solution for efficient process monitoring. 

In light of these considerations, this study contributes to the 
existing body of knowledge on soft sensors by exploring new 
approaches, validating their performance through empirical 
studies, and addressing the challenges that can impede their 
widespread adoption. By synthesizing theoretical insights with 
practical applications, this study aims to foster a 
comprehensive understanding of soft sensors and catalyze their 
integration into mainstream industrial practices.  

The landscape of soft sensors has garnered substantial 
attention in the recent literature, reflecting a collective effort to 
harness the potential of computational models in augmenting 
and, in some cases, supplanting traditional sensing 
methodologies. Previous studies categorized fault detection and 
diagnosis approaches into three main categories: model-based 
methods, knowledge-based methods, and data-driven methods 
[13]. In recent years, data-driven approaches have been 
increasingly employed because of the complex nature of 
chemical processes to construct a reliable and precise 
mathematical model without the need for information about the 
process or prior expert knowledge. In [14], the focus was on 
improving the performance of oil refinery processes by 
developing a soft sensor model that predicts crude oil cuts from 
the initial stage of the refining process. This predictive model 
combines Rough Set Theory (RST) and the Adaptive Neuro-
Fuzzy Inference System (ANFIS). RST was used to handle 
uncertain and imprecise data by identifying essential features 
within a dataset. Compared to traditional Proportional-Integral-
Derivative (PID)-based cascade control, the findings of the 
suggested ANFIS-based cascade control did not overshoot and 
provided an improvement of 26.65% and 84.63% in the rise 
and settling times, respectively. In [15], soft sensor data were 
analyzed in agricultural settings. Historical raw data was 
collected for cultivation using IoT-based soft sensor modules. 
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The raw data were preprocessed to eliminate missing values, 
normalize them, and eliminate noise from the image captured 
by the IoT module. A Weight-Optimized Neural Network with 
Maximum Likelihood (WONN_ML) was used to represent the 
features in the processed data. 

The field of soft sensors continues to evolve rapidly. This 
study aimed to address specific gaps in the existing literature, 
such as focusing only on soft sensing and monitoring systems 
to detect, analyze, and isolate simple types of fault in the oil 
industry, but to develop prototypes in a simulation 
environment, explore algorithmic approaches, and validate 
their applicability in practical industrial scenarios. The 
synthesis of prior work and the proposed advances aim to 
contribute to the ongoing dialogue regarding the efficacy and 
scalability of soft sensors across diverse domains. This study 
addresses a real-world issue by proposing a soft sensor model 
with raw data from actual refinery operations. The model can 
be built to perform efficiently with inconsistent and erroneous 
data, increasing its precision and dependability in real-world 
situations. Emphasis on model interpretability is an important 
component of the proposed work. The goal is to clarify the 
model's decision-making process, establish trust among 
refinery employees, and enable well-informed decision-making 
by making the soft sensor work instead of the failure sensors 
until the problem is solved. 

II. THE PROPOSED APPROACH 

The proposed method was designed to detect all types of 
faults, which is a main challenge. It includes several main 
stages that work together to build the desired soft-sensor 
model. These stages are data collection, preprocessing, 
clustering, and classification. Figure 1 shows the main stages of 
the proposed method. 

A. Data Collection 

Real data were collected from the Salahuddin oil refinery in 
Iraq, as shown in Figure 2. The data was collected for seven 
months, from January 1, 2023, to July 31, 2023. These data 
were collected in 10 s intervals from the daily report of the 
unit's activities. Subsequently, the data were validated and 
exported from an Excel spreadsheet to a CSV file. The 
datasheet contains several types of data: temperature, pressure, 
data flow, Set Point (SP), Control Valve (CV), and Actual 
Value. The most effective values considered were Temperature 
(TE), and Pressure (PV) which are correlated with the SP using 
Pearson Correlation Coefficient Analysis (PCCA) to make the 
desired decisions for the CV [16]. The total number of 
collected data was 20 million. Table I presents a sample of 
collected data. 

TABLE I.  SAMPLE OF DATA COLLECTED FROM THE 
SALAHUDDIN OIL REFINERY 

TE PV SP CV 

47.88 67.05 66 15.15 
202.09 73.97 67 100 
205.49 84.82 84.82 0 
20.26 8.29 8.29 100 
240.49 259.35 260 63.45 
255.47 199.95 200 62.66 
20.84 0 0 100 

 
Fig. 1.  The proposed approach. 

 
Fig. 2.  Salahuddin oil refinery. 

The most effective values considered were temperature and 
pressure, which were correlated with SP using PCCA in [16]: 

���� , ��� �  
�� ��,���
������� .������

   (1) 

where �  is the Pearson correlation coefficient, ������  and 
 ������ are respectively the mean values of the two variables, 
�� denotes the individual values of one variable, and �� denotes 
the individual values of the other variable. Table II lists the 
correlation coefficients for all sensors. The relevance between 
sensors is obvious due to cross-sensitivity. PCCA numbers 
between –1 and 1 measure the strength and direction of the 
relationship between two variables.  

TABLE II.  DATA CORRELATION 

Correlation 

coefficient 
TE PV SP CV 

TE 1 0.8227 0.8137 -0.2345 
PV 0.8227 1 0.9996 -0.2281 
SP 0.8137 0.9996 1 -0.2353 
CV -0.2345 -0.2281 -0.2353 1 
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B. Data Preprocessing 

The second stage involved data preprocessing. The quality 
of historical data has a direct impact on the performance of soft 
sensors. Data collection in industrial processes can be 
hampered by issues such as missing data, sample time, and 
outliers. As a result, the data cannot be used for soft-sensor 
modeling. Thus, several steps were considered to address the 
aforementioned issues and prepare the data for the next stages. 
These steps included normalization, missing data imputation, 
outlier data, and data reduction. 

1) Normalization 

Normalization is used in the preprocessing step to remove 
significant imbalances between the features and balance their 
impact on the machine learning algorithm computations. The 
proposed method employs the min-max normalization 
approach. Each output data point has a value in the range of [0, 
1]. Min-max normalization was performed using [17]: 

������� � �  �!�"
�!#$  �!�"

     (2) 

where �������  is the normalized value, � is the original value, �%�&  the maximum value of � , and �%�'  is the minimum 
value of �.  

TABLE III.  DATA NORMALIZATION 

TE PV SP CV 

0.1174 0.2585 0.2538 0.1515 
0.7730 0.2852 0.2576 1 
0.7875 0.3270 0.3262 0 

0 0.0319 0.0318 1 
0.9363 1 1 0.6345 

1 0.7709 0.7692 0.6266 
0.0024 0 0 1 

 
The collected data values' ties were maintained using min-

max normalization. Smaller standard deviations in the data 
resulting from this constrained range can reduce the impact of 
outliers. 

2) Missing Data Imputation 

Missing data refers to the case when a variable in the data 
has no value recorded. This study used mean substitution [18], 
which preserves the sample mean for the variable by 
substituting the variable mean for any missing values. 

TABLE IV.  BEFORE DATA IMPUTATION 

PV CV 

0.7970 0.3500 
0.5812 NaN 

NaN 0.3500 
0.6470 0.3500 

TABLE V.  AFTER DATA IMPUTATION 

PV CV 

0.7970 0.3500 
0.5812 0.3500 

0.6141 0.3500 
0.6470 0.3500 

 

3) Outliers Removal 

An outlier is any observation that is abnormally distant 
from any other value. Outliers present a challenge for several 
statistical examinations, because they may either misrepresent 
the actual results or overlook important findings. This study 
used the K-Nearest Neighbor (KNN) to detect and remove 
outliers according to their distance from the other data, and the 
nearest non-outlier value was used to replace the outliers 
removed [19]. In Figure 3, the outlier is the highest point with a 
value of approximately 150, but the other values are between 
115-120. Figure 4 shows the effect of removing the outlier by 
putting the data in the range 115-120, which is the normal 
range of the original data.  

 

 
Fig. 3.  Data outlier. 

 
Fig. 4.  Applying outliers' removal. 

4) Data Reduction 

Data reduction is the process of reducing some data 
elements. If the data are multidimensional, reduction may also 
occur in other areas, such as data dimensionality. Any data 
reduction typically results in a reduction in the data volume. 
Each time a request is made to access a redundant segment, it 
maintains only a single copy of that segment during storage. By 
combining a large number of variables into a smaller one, most 
of the information in the larger set is retained. Principal 
Component Analysis (PCA) is a dimensionality reduction 
method commonly used to reduce the dimensionality of large 
datasets [20]. Figure 5 shows a sample of the results of 
applying PCA to reduce the dimensions of the data. 
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Fig. 5.  Data reduction. 

C. Data Clustering 

Data clustering aims to divide a set of data into a certain 
number of groups or clusters that are best fit by a 
predetermined criterion function. Data clustering is an essential 
and supportive tool with a multitude of applications. Fuzzy C-
Means Clustering (FCM) [21] was used to cluster the data into 
groups according to their characteristics. The output from this 
stage is then passed to the classification stage. 

D. Classification 

Classification is a method of separating and organizing data 
into relevant groups (classes) based on specific criteria. In this 
stage, a soft sensor was built using machine learning methods. 
A classification approach was proposed to build an efficient 
soft sensor based on a Bagged Decision Tree (BDT) using 
several decision trees [22] and an SVM with a polynomial 
kernel [23]. The input data were split into many sets that 
overlapped and then fed into the classification module. Several 
classification results were obtained from the proposed approach 
and then a voting function using SVM to select the most 
frequent results to consider as the final result. Figure 6 
illustrates the proposed classification approach. 

 

 
Fig. 6.  Proposed classification approach. 

 

The proposed approach classifies the data as normal or 
abnormal (fault) data. For normal data, this implies that the 
process is stable; otherwise, an error is considered. Each type 
of error has a unique data corruption response or a set of 
properties. Typical types of faults regarding operational 
circumstances and sensor malfunctions include the following: 

 Bias: There is a continuous shift in the values received 
compared with the right value. 

 Drift: Error levels in the data either increase or decrease 
with time. 

 Precision Degradation (PD): Over time, the sensor plates 
may become worn down or unclean, which might cause 
inaccuracies in the received data from the sensors that 
resemble random noise around the normal values. 

 Failure: The data obtained might be entirely random or 
continuous due to sensor failure or measurement limits. 

Figure 7 shows all the fault types, where the blue line 
represents the normal data and the yellow stars represent the 
faults. 

 

 
Fig. 7.  Various types of gross errors. 

E. Decision Making 

After classifying the data using the proposed approach, a 
decision-making stage followed. The soft sensor maintains the 
occurrence of issues until they are fixed. The soft sensor works 
as a backup sensor to avoid interrupting the process based on 
the reference data obtained from the original collected data and 
addresses all possible types of fault that may occur. After this 
stage, an evaluation process was performed to evaluate the soft 
sensor output and then use it to optimize the incoming real-time 
data, thus obtaining better results. Algorithm 1 describes the 
main steps of the proposed method. 

Algorithm 1: The proposed method 

Input: IDs dataset 

Output: Detected faults 

Load the IDs dataset 

Apply validation process on the input data 

Split the data into training and testing 

For all input data 

  Perform preprocessing 
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  Normalization 

  Missing Data Imputation 

  Outliers Removal 

  Data Reduction 

Apply the clustering process using FCM 

Apply the proposed approach for 

classification BDT-SVM 

Identify the fault using the decision-

making process 

Return the detected fault type 

 

III. RESULTS AND DISCUSSIONS 

The proposed method was implemented using MATLAB 
2023b in Windows 11. Several methods are used to evaluate 
the performance of soft sensors. The input dataset was divided 
into two sets: 70% for training and 30% for testing. Accuracy 
(3) was used to obtain system results. The input data was read 
by the system and the preprocessing steps were applied first.  

())*��)+ � ,-. ,/
,-.,/.0-.0/   (3) 

where TP denotes the true positives, TN denotes the true 
negatives, FP denotes the false positives, and FP denotes the 
false negatives. Table VI shows the effect of applying the 
preprocessing stage, indicating an improvement in accuracy by 
3.6%.  

TABLE VI.  ACCURACY RESULTS BEFORE AND AFTER 
APPLYING THE PRE-PROCESSING 

 Accuracy 

Without preprocessing 96.33% 
With preprocessing 99.96% 

 

 
Fig. 8.  Proposed soft sensor. 

Applying data clustering enhances the results by grouping 
the data into several sets. These sets had the same 
characteristics and improved classification results. In the 
proposed method, the best clustering results were obtained by 
the Fuzzy C-Means (FCM) method, as shown in Figure 9. 

 

 
Fig. 9.  Fuzzy C-means clustering. 

Several methods have been used for classification in 
machine learning. Different machine learning classifiers were 
tested, and Table VII shows their results.  

TABLE VII.  CLASSIFICATION ACCURACY RESULTS 

Classifier Accuracy 

KNN 94.7% 
SVM 96.3% 
DT 92% 

BDT 97.2% 
BDT-SVM 99.96% 

 
The proposed approach (BDT-SVM) achieved 99.96% 

classification accuracy, which was higher than that of the other 
classifiers, offering an improvement in the obtained results by 
5.26% compared to KNN and 7.96% compared to DT. In 
addition, the proposed approach achieved better results than the 
original BDT and SVM by 2.76% and 3.66%, respectively.  
Three SVM kernels were tested for better classification results, 
with the polynomial kernel achieving the best results, as shown 
in Table VIII. 

TABLE VIII.  ACCURACY RESULTS OF VARIOUS SVM 
KERNELS 

SVM Kernel Accuracy 

Linear 98.6% 
RBF 99% 

Polynomial 99.96% 

 
Moreover, the proposed classification approach achieved a 

minimum classification error of 0.2, which was eliminated after 
several training iterations using 50 trees, as shown in Figure 10. 
Figure 11 shows a sample of the detected faults after the 
classification stage. The faults (represented by yellow stars) are 
located above and below the original data represented by the 
blue line. After detecting the faults in the previous stage, the 
decision-making stage takes appropriate action to solve these 
faults. This stage functions as an output of the soft sensor to fix 
the possible faults that occur during the refinery process. The 
results of applying the decision-making stage are shown in 
Figure 12. 
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Fig. 10.  Classification error. 

 
Fig. 11.  Detected faults. 

 
Fig. 12.  Fault tolerance. 

IV. CONCLUSION 
This study proposed an approach for efficient soft sensors 

based on machine learning for real-time data obtained from the 
Salahuddin oil refinery in Iraq. Soft sensors can be deployed 
within the refinery control system or Supervisory Control and 
Data Acquisition (SCADA) systems to provide real-time 
predictions of process variables. Integration with existing 
control systems allows operators to effectively monitor and 
control refinery operations. The proposed method achieved 
high fault detection and classification results. The 
preprocessing stage prepared the data for the next stage via 
several steps, which made the data representation easy to deal 

with. The FCM clustering method was used to enhance the 
fault detection process by isolating normal data from other data 
containing errors. The proposed method involves a hybrid of 
BDT and SVM classifiers, testing all dataset attributes using 
BDT and then performing a voting process using SVM to 
select the best classification result. In the future, the proposed 
soft sensor can be employed to deal with other types of data. 
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