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ABSTRACT 

The need to develop ecologically friendly sustainable building materials is made apparent by the 

worldwide construction industry's substantial contribution to global greenhouse gas emissions. The use of 

supplemental materials in concrete is one potential solution to lessen the environmental footprint. Thus, 

the purpose of this work is to use Machine Learning (ML) algorithms to forecast and create an empirical 

formula for the Compressive Strength (CS) of concrete with supplemental materials. Six distinct ML 

models—XGBoost, Linear Regression, Decision Tree, k-Nearest Neighbors, Bagging, and Adaptive 

Boosting—were trained and tested using a dataset that included 359 experimental data of varying mix 

proportions. The most significant factors used as input parameters are cement, aggregates, water, 

superplasticizer, silica fume, ambient curing, and supplemental material. Several statistical measures, such 

as Mean Absolute Error (MAE), coefficient of determination (R2), and Mean Square Error (MSE), were 

used to evaluate the models. XGBoost model outperformed the other models with R
2
 values of 0.99 at the 

training stage. To ascertain how the input parameters affected the outcome, feature importance analysis 

using Shapely Additive exPlanations (SHAP) was conducted. It was demonstrated that curing age and 

cement type significantly affected the strength of concrete with high SHAP values. By eliminating 

experimental procedures, reducing the demand for labor and resources, increasing time efficiency, and 

offering insightful information for enhancing sustainable manufacturing of concrete, this research 

advances the low-cost production of concrete in the USA construction industry. 

Keywords-AI; construction materials; ML; business production; strength prediction 

I. INTRODUCTION  

Concrete is the most prevalent construction material due to 
its remarkable versatility, availability of raw resources, and 
minimal maintenance expenses [1]. Nonetheless, the worldwide 
annual output of over 25 billion tons of concrete manufacture 
has led to considerable environmental strain due to its 
contribution to CO2 emissions [2]. Seven percent of annual 
CO2 emissions originate from clinker production for Portland 
cement [3]. The concrete production industry is improving its 
compliance with regulations pertaining to sustainable 
development and energy saving. Minimizing cement use by 
partly replacing it with mineral admixtures or Supplementary 
Cementitious Materials (SCMs) might substantially aid in 
attaining this objective [4]. SCMs are used to mitigate 
environmental impact and improve the workability, mechanical 
attributes, and durability of concrete [5-7]. Ground granulated 
blast furnace slag, fly ash, bottom ash, glass powder, marble 
powder, granite powder, coral waste powder, palm oil clinker, 
and limestone powder have demonstrated efficacy in partially 
substituting cement in concrete to mitigate its adverse 
environmental and economic impacts [8, 9]. Consequently, it is 
logical to substitute a part of the cement with cost-effective, 
inert, and eco-friendly materials for sustainable development 
[10]. The intricate and evolving characteristics of cement 
hydration, along with our limited comprehension of pozzolanic 

reactivity, render it very challenging to simulate the mechanical 
properties of concrete including SMCs by empirical models 
[11]. The characteristics of the SMCs must be determined by 
comprehensive testing and laboratory studies, which may be 
costly, time-intensive, and arduous [12, 13]. Moreover, doing 
comprehensive laboratory work might be difficult due to 
specific constraints or variables, such as authorized zones for 
the storage and curing of concrete mixtures [14]. The 
Compressive Strength (CS) of concrete is affected by several 
factors, including fine and coarse aggregate composition, 
curing duration, and concrete mixture proportions, all of which 
need investigation, consuming time [15-17].  

The data-driven Machine Learning (ML) technique in civil 
engineering has recently attracted significant interest. However, 
since ML algorithms just need data input and do not demand 
extensive theoretical examination, it is expected that they 
would exhibit comparable performance for concrete, owing to 
their robust predictive capabilities [18, 19]. The ML-based 
approach has the capability to provide a robust and reliable 
alternative for elucidating the complex link between input 
parameters and the desired output parameters using bigger data 
sets [20, 21]. Several prominent ML methods, including 
Artificial Neural Networks (ANNs), Random Forests (RFs), 
and Decision Trees (DTs), have been successfully used to 
address complex regression issues in civil engineering [22]. 
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The RF model was identified as the most accurate for 
forecasting the mechanical parameters of roller-compacted 
concrete pavement in comparison to ANN models. Authors in 
[23] employed ML models based on SVM to predict the 
mechanical properties of granite waste-based concrete, 
resulting in a major accuracy enhancement against 
conventional predicting methods. Ensemble learning methods 
like Bagging and Boosting have also gained popularity for their 
robustness and reliability and can further improve prediction 
accuracy [24]. The introduction of Bagging [25] showed that an 
averaging ensemble could compensate for the increase in 
variance, thus increasing the model stability, a critical aspect of 
complex material behavior in civil engineering applications.  

Boosting methods, especially Ada-Boost and Gradient 
Boosting (GB) have been successfully applied for CS 
prediction as they train initially weak models sequentially to 
improve the accuracy of the predictive model [26]. In [27], the 
authors focused on how Boosting algorithms can iteratively 
adjust model weights in order to reduce misclassifications, 
making them extremely useful and relevant for more 
complicated prediction problems where the data may contain 
various features that interact with each other. Authors in [28] 
used a Genetic Programming (GP) model, adaptive boosting 
(AdaBoost), and GB to forecast concrete strength. Authors in 
[29] developed shear strength prediction models for beam-
column junctions with RF models. To predict the CS of 
concrete, authors in [30] used boosting-based techniques, 
including GB, AdaBoost, and Extreme Gradient Boost (XGB). 
XGB demonstrated superior outcomes with the highest R2 
value over 0.90. XGB had the highest accuracy among the ML 
models used in [31] for anticipating the shear capability of RC 
beams, with a RMSE of 1.346 and a MAE of 0.704. Authors in 
[24] discovered that Light Gradient Boosting (LGB) has 
superior performance in assessing the strength of 3D-printed 
concrete compared to XGB, Support Vector Regression (SVR), 
and RF models. Their research underscores the advantages of 
ML compared to traditional analytical or empirical methods. 

Two significant deficiencies exist in the current ML 
techniques employed to predict the CS of concrete with 
additives: firstly, there is an absence of thorough parametric 
analyses such as SHapley Additive exPlanations (SHAP), and 
secondly, there is a necessity for more advanced and precise 
ML models. The results may lack generalizability since most 
previous studies used datasets that were either insufficiently 
sized or lacked enough data points. This study addresses this 
gap in the literature by using and comparing six ML models, 
namely XGB, DT, AdaBoost, Linear Regression (LR), k-
Nearest Neighbors (kNN), and Bagging algorithms. The study 
used 359 data points from prior research and seven critical 
input parameters, which significantly enhanced the precision of 
the CS prediction. Furthermore, the models underwent a 
thorough verification process by juxtaposing the anticipated 
results with actual data samples and using a comprehensive 
array of statistical measures to evaluate performance during 
training and testing. To comprehend the factorial influence of 
input materials on the CS prediction, as well as optimize the 
mix materials, we assessed the significance of the 
characteristics. The outcomes of this study could be an 
effective solution for accelerating concrete production with 

minimal cost, which will introduce a new era in the US 
construction industry. 

II. RESEARCH METHODOLOGY  

Six distinct models were assessed to assess the most 
accurate ML model for assessing the CS of supplement-based 
concrete. The database employs a random division for testing 
and training applicable to all six ML models. The division is 
upheld at 80% for the training set and 20% for the testing 
dataset. Figure 1 presents the link network of the ML 
algorithms for this study. 

 

 
Fig. 1.  ML algorithm working network. 

A. Machine Learning Algorithms 

AdaBoost is a boosting technique that uses DT regression 
as weak learners to assess data properties [32]. AdaBoost uses 
only a proportion of that data, making hypotheses on different 
subsets and adjusting them with respect to wrongly classified 
examples from previous classifiers, thus reducing the 
overfitting vulnerability. 

The Bagging regressor is an ensemble technique that 
reduces overfitting by making predictions on multiple DTs. 
Though it increases the robustness of models, it adds 
sophistication and could be less This method reduces errors in 
initial predictions and gives estimates.  

LR is one of the most fundamental and widely used 
statistical and ML methods for modeling the relationship 
between a dependent variable and one or more independent 
variables. The method assumes a linear relationship between 
the predictors and the response, expressed mathematically as: 

y = �� �  ���� � ���� � ⋯ � �	�	 � є  (1) 

where y represents the dependent variable, x1, x2…xn are the 
independent variables, ��  is the intercept, �� …..  �	  are the 
coefficients of the predictors, and є is the error term accounting 
for unexplained variability. LR is widely appreciated for its 
simplicity, interpretability, and efficiency, particularly when 
the relationship between variables is approximately linear. 

A DT is a non-parametric supervised learning method used 
for both classification and regression. The model utilizes 
recursively binary trees based on feature values and can handle 
both categorical and continuous data. In this framework, 
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internal nodes represent the decision on an attribute, branches 
represent the outcome of the decisions, and leaf nodes represent 
the final prediction. Figure 2 illustrates the training and testing 
of the DT model, indicating that the minimum Root Mean 
Square Error (RMSE) for training occurred at 20 iterations. The 
minimum RMSE values for the training set were below 2.5 
MPa. 

 

 
Fig. 2.  RMSE vs iteration number for the DT model. 

kNN is an easy, non-parametric ML classifier and 
repressor. The kNN algorithm classifies a data point according 
to how its neighbors are classified. Generally, the distance 
among points is commonly measured with Euclidean distance, 
but other metrics may also be used as appropriate [33]. kNN is 
noted for its conceptual simplicity and effectiveness, especially 
with problems where the decision boundary is not linear. 

XGB is an optimized distributed gradient boosting library 
designed to be highly efficient, flexible, and portable. With 

extra features such as tree pruning and weighted quantile 
sketch, XGB is good for heavy-duty modeling involving very 
large complex datasets. Due to these optimizations, XGB is 
well-regarded in ML competitions and is used in many 
practical use cases [34]. 

B. Performance Evaluation 

The ML models’ productivity and efficiency were assessed 
using MSE, R2, and MAE. The relative contribution of each 
feature value to the model's prediction is ascertained by 
SHapley Additive exPlanations (SHAP). SHAP is a game 
theoretic approach that explains the output of any ML model. 
In order to do this, it uses some principles from game theory, 
particularly Shapley values, which allow us to attribute each 
feature's contribution to a model's predictions. SHAP is 
designed to provide insight into feature importance and 
interaction, which can be helpful in increasing model 
interpretability [35]. For the purpose of illustrating these 
feature contributions, SHAP offers several visual aids, 
including force, dependence, and summary plots. 

III. RESULTS AND DISCUSSION 

A. Dataset Analysis and Data Distribution  

Table I presents the statistical measures of the database 
features, including parameters, units, standard deviation, mean, 
25th percentile, median, and 75th percentile values. As can be 
seen, the cement content ranged from 139.6 to 540 kg/m3, with 
an average of 311.94 kg/m3. The coarse aggregate exhibited a 
maximum value of 1134, a minimum value of 801, and a mean 
value of 975.16. The supplements exhibited a mean density of 
75.76 kg/m3, with a range from 0 to 282.8 kg/m3 and a standard 
deviation of 82.45 kg/m3. 

TABLE I.  DATASET STATISTICS 

Models Mean Deviation 25% 50% 75% 

Cement (kg/m3) 311.9490251 94.82850026 230 295.7 380 

Supplements (kg/m3) 75.76685237 82.45572056 0 53.8 132.4 

Silica fume (kg/m3) 47.86908078 57.74486475 0 0 100.4 

Fine aggregate (kg/m3) 776.5512535 94.56087066 755.8 780.6 852.2 

Coarse aggregate (kg/m3) 975.1671309 73.31961889 932 961.2 1030 

Water (kg/m3) 175.8891365 27.52027935 155.6 168.1 190.65 

Superplasticizers (kg/m3) 8.960445682 6.7239417 4.6 9.5 11.7 

Ambient curing (days) 60.58774373 79.04126965 14 28 90 

CS (MPa) 44.35523677 17.07372469 32.92 43.06 55.9 

 

In this study, materials that have pozzolanic activity and the 
ability to enhance strength when used as a binder replacement 
have been considered and taken as supplements. For this 
particular study, two waste-based byproducts (waste glass 
powder and waste quartz powder) were considered as 
supplements. These materials similar compositions and when 
used as SCM enhance concrete strength [36, 37]. CS ranged 
from 7.4 MPa to 82.46 MPa. Other input variables exhibit 
moderate deviation, as indicated in Table I. The cement and 
fine aggregate exhibited the highest standard deviation values, 
exceeding 90 kg/m3. Figure 3 illustrates the relationship 
between concrete strength values and various concrete mix 

components for the dataset considered in this study. As seen in 
Figure 3(a), cement content shows almost equal scattering 
between 200-500 kg/m3. However, supplements visualize small 
clusters of data points between 100-200 kg/m3 (Figure 3(b)). 
Silica fume showed a dense cluster between 100 and 125 
kg/m³, which indicates most of the mix proportions preferred 
silica fume dosage within 100-125 kg/m3. Figures 3(d)-(h) also 
visualize the distribution of data points and their association 
with the strength of concrete. The illustration is important for 
understanding the data distribution and how every point of the 
input variables correlates with the output variables.  
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Fig. 3.  Data distribution and the relationship between input and output variables.

B. Pearson Correlation among Features 

The Pearson correlation coefficients between each variable 
were calculated, and the results are shown in Figure 4. High 
correlation coefficient values between the input variables, 
whether positive or negative, might result in approaches that 
are inefficient and make it more difficult to determine how the 
variables impact the answer. This demonstrates that the 
independent input variables do not display a substantial number 
of correlations with one another. On the basis of the findings, it 
is clear that there is a substantial association between the values 
of cement and concrete strength (0.48), which means that 
concrete strength mostly depends on the quantity of binders. 
Additionally, supplements and concrete strength also exhibited 
a high positive correlation value (0.34). Due to the pozzolanic 
activity of the supplement materials used in this study (glass 
powder and quartz powder), they also influence the strength 
and incorporating higher supplement content will also increase 
the strength of concrete [36, 38]. Superplasticizers (+0.31) and 
curing age (+0.25) also visualize positive association with 

strength. This aligns with prior research findings, which 
indicate that while superplasticizers contribute to reduced water 
content and improved particle packing, their influence is 
secondary to the core binder components [39, 40]. It should be 
noted that multicollinearity is a problem that occurs when 
predictors have a substantial connection with one another. This 
is an extremely important point to keep in mind. 

C. Evaluating Machine Learning Models 

The regression plots of the ML models are illustrated in 
Figure 5. The models' R2 scores show different performance 
patterns. While both XGB and DT exhibit near-perfect R2 

scores in training (0.999), meaning they nearly perfectly fit the 
training data, their test R2 scores (0.880 for XGB and 0.80 for 
DT) indicate a possible overfitting because they generalize to 
new data with a slightly lower effectiveness. The regression 
plots show better performance when the R2 values are closer to 
1 [39]. Bagging is very competitive with XGB because it finds 
an optimum balance between the test train dataset, with a test 
R² of 0.854 and a training R² of 0.981. 
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Fig. 4.  Pearson correlation between features. 

AdaBoost also shows satisfactory performance with an R2 

value of 0.890 (training) and 0.80 (testing). In contrast, LR 
shows poor performance with R2 scores lower than 0.60, 

suggesting that it struggles to capture the underlying patterns. 
kNN has moderate R2 scores, offering basic predictive power 
but falls behind models like XGB and BAG. Overall, while 
XGB was the superior model, the DT and Bagging models also 
showed very good prediction performance. In a past study on 
ML models' ability to predict the CS of palm oil fuel ash 
concrete [8], the XGB model had satisfactory R2 values, which 
were very similar to the ones acquired in this study. 

D. Performance Metrics 

Figure 6 and Table II illustrate the error distribution of the 
models. The performance measures (MSE, MAE) for the ML 
models exhibit distinct variations. XGB has a minimal MSE of 
0.003 during training, which escalates to 31.74 in testing. For 
the XGB model, the substantial increase in MSE and MAE 
from training (0.003 and 0.03, respectively) to testing (31.74 
and 3.21) indicates moderate overfitting. This phenomenon 
may arise from XGB's ability to capture complex patterns 
during training, which, without proper regularization, could 
lead to overfitting of the training data and reduced 
generalization during testing. Regularization techniques, such 
as adjusting the learning rate or increasing tree constraints, 
could help mitigate this issue. 

TABLE II.  SUMMARY OF THE OUTPUT OF MODEL’S PERFORMANCE 

Model R2 (Train) R2 (Test) MSE (Train) MSE (Test) MAE (Train) MAE (Test) 
XGBoost 0.999 0.88 0.003614935 31.78424911 0.038395839 3.210272489 

LR 0.544 0.476 135.0907087 139.0844915 9.399479655 9.039458656 
DT 0.999 0.807 ~0.00 51.217725 ~0.00 4.772777778 

kNN 0.779 0.652 65.35702198 92.27886189 6.192940767 7.119833333 
Bagging 0.981 0.854 5.526606265 38.87828928 1.560139373 4.046611111 

AdaBoost 0.89 0.802 32.48546927 52.43817956 4.734921248 5.593612652 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig. 5.  Scatter plot of the proposed ML models concrete CS.
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(a) 

 

(b) 

 

(c) 

 

Fig. 6.  Performance evaluation using (a) R2, (b) MSE, and (c) MAE. 

The DT model demonstrates near-perfect training 
performance, with MSE and MAE values approaching zero. 
However, its performance significantly deteriorates in testing, 
with MSE and MAE values of 51.21 and 4.77, respectively, 
highlighting a pronounced overfitting problem. This issue is 
inherent to DT, as they tend to form highly specific models 
tailored to training data. Ensemble techniques such as RF or 
GBR could address this challenge by reducing variance. 

The GBR model strikes a better balance between training 
and testing performance, with moderate increases in MSE 
(from 5.52 to 38.87) and MAE (from 1.56 to 4.04). This 
suggests that GBR effectively captures the data's underlying 
structure without overly complex patterns that compromise 
generalization. Its stability stems from iterative optimization 
and inherent regularization mechanisms. 

AdaBoost also demonstrates commendable performance, 
with relatively stable error metrics during both training (MSE: 
32.48, MAE: 4.73) and testing (MSE: 52.43, MAE: 5.59). This 
performance stability reflects AdaBoost's ability to focus on 
difficult-to-predict instances while maintaining robustness 
across datasets. 

In contrast, kNN and LR models exhibit relatively poor 
performance. kNN's higher MSE (65.35 in training, 92.27 in 
testing) and MAE (6.19 in training, 7.11 in testing) suggest it 
struggles with high-dimensional data or insufficiently 
optimized hyperparameters (e.g., number of neighbors). LR’s 
extreme MSE (135.09 in training, 139.08 in testing) indicates 
an inability to capture non-linear relationships in the data, 
making it unsuitable for complex datasets. 

Notably, the Bagging regressor emerges as the most 
balanced model, with consistently low errors across training 
and testing. This suggests that Bagging effectively reduces 
variance through ensemble learning, making it reliable for both 
training and unseen data. 

E. Feature Analysis 

The importance of each feature to the model's predictions of 
compressive strength of SCMC is represented graphically by 
the SHAP summary plots in Figure 7. Each feature's 
importance is displayed as a range of violin plots on the graph 
in the summary plot, where the x-axis indicates the SHAP level 
and the y-axis indicates feature relevance. Generally, dark red 
indicates lower importance, and light red points indicate higher 
importance. This figure shows the trend of various input 
materials for each data point with a particular SHAP value and 
illustrates how an input variable affects the result of a 
prediction algorithm. Ambient curing and cement have a 
significantly high influence on the CS of SCMC, with a SHAP 
value of over +10 at high feature values. This means they 
significantly enhance the strength of SCMC. Water showed a 
similar inverse trend, and a SHAP value of -10 was achieved at 
high feature values. Superplasticizers can be effective in 
reducing the required quantity of water, which enhances the 
compressive strength of concrete. Although coarse and fine 
aggregates have low SHAP values, they still positively impact 
the CS. Finally, supplemental materials have an almost neutral 
SHAP feature, which indicates they have no significant impact. 
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Fig. 7.  SHAP feature analysis of variables. 

IV. CONCLUSIONS 

This study aimed to introduce predictive machine learning 
models for assessing the compressive strength of concrete 
incorporating supplements. XGB illustrated superior accuracy 
compared to other techniques, achieving the lowest mean errors 
of 0.03 during training and 3.21 during testing. In contrast, 
linear regression exhibited the highest mean errors, indicating 
problems with overfitting. The Bagging regressor demonstrated 
competitive performance, whereas models such as decision 
trees, k-nearest neighbors, and AdaBoost attained perfect 
minimum errors. XGB demonstrated outstanding accuracy with 
R2 values of 0.999 for training and 0.88 for testing, although 
some overfitting was observed. AdaBoost and kNN exhibited 
satisfactory R2 values of approximately 0.89 and 0.77 during 
testing. In contrast, Bagging and decision trees demonstrated 
effective performance, maintaining a balance between training 
and testing R2 scores. 

The analysis of mean SHAP values indicates that the two 
primary factors influencing the strength of SCMC are cement 
and the duration of ambient curing. The SHAP feature plot 
indicates that water and fine aggregate negatively affect 
compressive strength, whereas superplasticizers and cement 
significantly enhance strength at elevated feature values, as 
evidenced by SHAP values. In comparison to other variables, 
supplements exert a lesser influence on strength enhancement.  

Future research may explore the incorporation of additional 
parameters or data sources into the machine learning models. 
Enhancing the predictability of compressive strength may 
involve incorporating data regarding the specific characteristics 
of the supplements utilized or the prevailing local 
environmental conditions. This study's findings provide an 
effective means to reduce experimentation costs and labor 
hours, thereby enhancing concrete production efficiency within 
the USA construction industry. 
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