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ABSTRACT 

This research evaluates the performance of various sentiment analysis models, including traditional 

machine learning approaches (Naive Bayes, KNN, CART), a deep learning model (LSTM), and the 

transformer-based model RoBERTa using an Amazon book reviews dataset. ROBERTa outperformed all 

other models, achieving an accuracy of 96.30% and an F1-score of 98.11%, underscoring its superior 

ability to process complex and semantically diverse textual data. Traditional models, while 

computationally efficient, demonstrated limitations in capturing nuanced textual relationships, and the 

LSTM model, although competitive, faced scalability challenges and overfitting issues. These results 

demonstrate how transformer-based architectures such as RoBERTa offer advantages in real-world 

applications, particularly in e-commerce and social media sentiment analysis. This study underscores the 

superior capabilities of RoBERTa for sentiment analysis, particularly in processing semantically diverse 

and context-rich textual data that traditional models struggle to capture. Future work will explore 

optimizing RoBERTa's computational efficiency and expanding its applications to multilingual and cross-

domain sentiment analysis tasks. 

Keywords-sentiment analysis; RoBERTa; Amazon book reviews; deep learning; machine learning models 

I. INTRODUCTION  

Researchers and practitioners use sentiment analysis as a 
vital tool to investigate opinions and emotions across diverse 
digital platforms, encompassing applications in business, 
politics, and public health [1, 2]. With the exponential growth 
of online data, sentiment analysis enables researchers and 
practitioners to extract valuable insights and leverage this 

information for informed strategic decision-making [3]. 
Despite its potential, one of the main challenges in sentiment 
analysis is addressing linguistic diversity and handling 
imbalanced datasets [4, 5]. Imbalanced data, where certain 
sentiment classes (e.g., positive or negative) significantly 
outweigh others, remains a pervasive issue. To mitigate this, 
data augmentation techniques, including the use of embedding 
such as GloVe, have been employed to generate linguistically 
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diverse samples, enhancing the representativeness of datasets 
[6, 7]. These methods enrich the dataset and bolster the models' 
capacity to handle imbalances effectively [7]. 

Sequential models, including Long Short-Term Memory 
(LSTM) networks and Gated Recurrent Units (GRUs), have 
proven to be instrumental in capturing long-term dependencies 
within textual data. However, their reliance on sequential data 
processing often results in higher computational overhead than 
transformer-based models, which can process data in parallel 
[5]. Transformer architectures, exemplified by the RoBERTa 
model, excel at capturing nuanced word meanings and 
contextual relationships with remarkable precision [8]. Recent 
studies have proposed hybrid architectures, such as RoBERTa-
GRU and RoBERTa-LSTM, which synergize the strengths of 
sequential and transformer models. These hybrids enhance the 
ability to capture long-term dependencies while improving 
computational efficiency [5, 8].  

The integration of Transformer-based architectures, 
particularly RoBERTa, has significantly advanced the field of 
Natural Language Processing (NLP). In [9] the hybrid 
RoBERTa-BiLSTM was proposed, which leverages 
RoBERTa's ability to generate meaningful word embeddings 
and BiLSTM's strength to capture long-term dependencies. The 
experiments demonstrated superior performance over 
traditional models, achieving 80.74%, 92.36%, and 82.25% 
accuracy on the Twitter US Airline, IMDb, and Sentiment140 
datasets, respectively. In [10], stress tests were carried out on 
transformer-based models, including RoBERTa, to assess their 
robustness in NLI and QA tasks. The findings showed that 
although these models exhibit enhanced robustness compared 
to recurrent neural networks, they remain susceptible to certain 
adversarial inputs, highlighting the need for further refinement. 
Collectively, these studies underscore the efficacy of RoBERTa 
in various NLP tasks while also pointing out areas where 
traditional and deep learning models can be further improved to 
achieve greater robustness and accuracy. 

The applicability of sentiment analysis extends across 
multiple domains. For instance, it has been utilized to evaluate 
user opinions on e-commerce platforms [4] and social media 
platforms such as Twitter and YouTube, which are critical for 
gauging public sentiment on a variety of issues [11, 12]. In 
public health, sentiment analysis has facilitated the evaluation 
of public attitudes toward epidemics, such as COVID-19 and 
Monkeypox, through hybrid models such as CNN-LSTM [12, 
13]. Tourism also benefits from sentiment analysis, which has 
been applied to assess tourist reviews of destinations. Such 
insights enable service providers and policymakers to enhance 
offerings and promote tourism more effectively [14, 15]. 
Advances in sentiment analysis have also involved the 
development of innovative techniques and models. Feature 
selection approaches such as Term Frequency-Inverse 
Document Frequency (TF-IDF), and information gain have 
demonstrated efficacy in improving model performance [6]. 
Deep neural network architectures, including Convolutional 
Neural Networks (CNNs) and LSTMs, have further contributed 
to enhancing both accuracy and processing speed when applied 
to complex datasets [1, 8]. In parallel, user-centric tools, such 
as web-based applications to predict sentiment scores on e-

commerce platforms and identify discrepancies between user 
reviews and ratings, have facilitated greater accessibility and 
engagement [4]. 

In summary, sentiment analysis continues to evolve by 
integrating cutting-edge techniques, robust tools, and domain-
specific applications. These advances enable researchers and 
practitioners to capture textual meaning and context with 
increasing accuracy while optimizing data processing and 
decision-making across diverse fields [8]. Therefore, sentiment 
analysis has demonstrated its versatility and impact across 
diverse fields, from business and politics to public health and 
tourism. Integration of advanced techniques, such as hybrid 
models that combine sequential and transformer-based 
architectures, has significantly enhanced the accuracy and 
efficiency of sentiment analysis. Innovations in data 
augmentation, feature selection, and deep learning architectures 
have further addressed linguistic diversity and data imbalance, 
enabling models to process complex datasets with precision. 
Furthermore, the development of user-friendly tools has 
expanded the accessibility and applicability of sentiment 
analysis, fostering greater engagement and practical utility. As 
the field continues to evolve, these advances improve the 
ability to extract meaningful insights from textual data and 
empower strategic decision-making, driving innovation across 
a wide array of domains. 

II. MATERIALS AND METHODOLOGY 

This study utilizes a combination of traditional machine 
learning, deep learning, and transformer-based models for 
sentiment analysis of Amazon book reviews. Figure 1 shows a 
research method diagram illustrating a systematic four-phase 
approach for a sentiment analysis or text classification project: 

1) Dataset Collection: 

a) Data is loaded from Kaggle 

b) Involves metrics and PSD revision data 

2) Preparation: 

a) Feature extraction using TF-IDF 

b) Word embedding implementation 

c) Sentiment labeling using a 1-5 scale rating system 

d) Split data into training (70%) and testing (30%) sets 

3) Building and testing multiple models: 

a) Naive Bayes (NB) 

b) KNN 

c) CART 

d) LSTM 

e) RoBERTa 

4) Performance comparison and summary based on: 

a) Accuracy 

b) Precision 
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c) Recall 

d) F1-Score 

 

 

Fig. 1.  Research method framework. 

The research follows a comprehensive sequential workflow 
that comprises four main phases: dataset collection, 
preparation, model development, and performance evaluation. 
Starting with data collection from Kaggle [16], the process 
goes through careful preparation steps including feature 
extraction using TF-IDF, word embedding implementation, and 
sentiment labeling on a 6-point scale, followed by a 70-30 
train-test split. The method then progresses to model building 
and testing, implementing five different algorithms and 
comparing them. The final phase involves a thorough 
performance evaluation using standard metrics, culminating in 
a comprehensive summary of results that enables an objective 
comparison of model effectiveness in the given task. 

Although this study used TF-IDF for feature extraction, 
future implementations could benefit from combining TF-IDF 
with n-grams or leveraging word embeddings to improve the 
traditional models' capacity to handle nuanced text data. 

A. Dataset Collection and Preparation 

This study uses a dataset of Amazon book reviews [16] 
associated with information such as reviewer names, locations, 
review dates, titles, and descriptions of the evaluated products. 
Each review also included a numerical rating ranging from 0 to 
5, where 0 indicated that the book was not recommended, and 5 
indicated a high recommendation. Reviews with fewer than 
three stars were classified as negative, while those with three or 
more stars were categorized as positive. Ambiguous reviews 
with unclear polarity were removed from the dataset. 

B. Word Embedding and Feature Extraction 

For feature extraction, this study used two methods: 

 TF-IDF was applied to convert the cleaned text into a 
numerical format suitable for traditional machine-learning 
models. A feature set of 5,000 words was created from the 
training data, representing the importance of each word 
within the overall document context. 

 Word Embedding for deep learning: The text was tokenized 
using Keras's tokenizer, and the tokenized sequences were 
padded to a uniform length of 100 words. This process 
allowed deep learning models, such as LSTM, to efficiently 
process the text. 

C. Sentiment Labeling 

Sentiment labels were generated based on the review 
ratings. Ratings of 3 and above were labeled as positive (1), 
while ratings below 3 were labeled as negative (0). 
Additionally, the NLTK's Sentiment Intensity Analyzer was 
used to analyze text polarity and verify the sentiment labels. 

D. Machine Learning Models 

Multinomial Naive Bayes is a probabilistic classification 
algorithm based on Bayes' theorem, particularly effective for 
text classification and document categorization tasks where 
features represent word counts or frequencies [17, 18]. The 
algorithm assumes conditional independence between features 
and uses the multinomial distribution to model the probability 
of observing specific word counts, making it computationally 
efficient and surprisingly accurate despite its simplicity in NLP 
applications [19].  

Decision Tree (DT) algorithms operate through recursive 
binary splitting of the feature space to create a tree-like 
structure of decision rules that minimize impurity measures 
such as the Gini index or entropy, making them effective for 
both classification and regression tasks [20, 21]. The 
mathematical formulation for the DT optimization problem 
aims to find the optimal split at each node to maximize 
information gain, expressed as: 

��������	��
�	� �  ��������  � ∑  ��/��  ∗  �������   

where I() represents the impurity measure (Gini or entropy), 
parent is the current node being split, k is the number of child 
nodes after splitting, nj is the number of instances in child node 
j, and n is the total number of instances in the parent node. For 
entropy: 

������  �  � ∑  ������ ∗  ���2���  

For Gini: 

������ � 1 � ∑ ��!����    
where c is the number of classes and pi is the proportion of 
instances belonging to class i in the node. 

KNN is a non-parametric, instance-based learning 
algorithm that classifies or predicts values based on the 
majority vote or weighted average of the k closest training 
examples in the feature space [22, 23]. The algorithm functions 
by calculating distances between data points and making 
predictions based on the characteristics of neighboring points, 
with its effectiveness heavily dependent on the choice of 
distance metric and the value of k, making it particularly useful 
in pattern recognition and data mining applications [24]. The 
distance calculation and prediction for classification is given 
by:  

"#  � ����$"�: 	 ∈  '()�*�  

and for regression:  

"# � 1/(�  ∗  +,	 ∈ '()�-"�   
The distance metrics are as follows: 

 Euclidean: �), "� � /∑ )� �  "��0���
!  

 Manhattan: �), "� � ∑ |)� � "�|0���   
 Minkowski: �), "�  � ,∑ |)� � "�|0��� 2-3

4 
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where "# is the predicted value, Nk(x) represents the k nearest 
neighbors of point x, yi is the target value of neighbor i, xi and yi 
are feature values of points x and y, n is the number of features, 

and•p is the power parameter for the Minkowski distance. For 

each model, performance metrics such as accuracy, precision, 
recall, and F1-score were calculated. 

E. Deep Learning Model 

LSTM networks are specialized Recurrent Neural Networks 
(RNNs) designed to overcome the vanishing gradient problem 
in traditional RNNs by incorporating memory cells with 
controlled information flow through input, forget, and output 
gates [25, 26]. This architecture enables LSTMs to learn long-
term dependencies in sequential data, making them particularly 
effective for tasks such as NLP, time series prediction, and 
speech recognition, where they can selectively remember or 
forget information over extended sequences [27]. The gate and 
cell equations are:  

 Forget gate: �5 �  678 · [ℎ5<�, )5]  +  ?8� 

 Input gate: 	5 �  67� · [ℎ5<�, )5] + ?�� 

 Candidate cell state: @̃5 �  ���ℎ7� · [ℎ5<�, )5] + ?�� 

 Cell state update: @5 � �5  ∗  @5<� +  	5  ∗  @̃5  

 Output gate: �5 �  67B · [ℎ5<�, )5]  +  ?B� 

 Hidden state: ℎ5 �  �5 ∗ ���ℎ@5� 

where σ represents the sigmoid function, ���ℎ is the hyperbolic 
tangent function, denotes matrix multiplication, ∗ represents 
element-wise multiplication, [ℎ5<�, )5]  indicates the 
concatenation of ℎ5<� and )5 , 7 and ? are weight matrices and 
bias vectors, respectively, � denotes the current time step, � − 1 
represents the previous time step, �5, 	5, �5  are the forget, input, 
and output gates, @5  is the cell state, ℎ5 is the hidden state, )5 is 

the input at time � , 78 , 7� , 7� , and 7B  are the respective 

weight matrices, and ?8, ?� , ?�, and ?B are the respective bias 

vectors. 

F. Transformer-based Model: RoBERTa 

RoBERTa (Robustly Optimized BERT Approach) is an 
enhanced variant of BERT that improves upon the original 
architecture through dynamic masking, larger batch sizes, and 
longer training on more diverse data, while removing the next 
sentence prediction objective [28, 29]. The model leverages the 
transformer architecture's self-attention mechanism and 
employs masked language modeling for pre-training, achieving 
state-of-the-art performance across various NLP tasks through 
its robust optimization strategies and enhanced training method 
[30]. The proposed architecture implements a sophisticated 
attention and output calculation framework, fundamentally 
based on the multi-head attention mechanism. The calculation 
of attention and output in the proposed architecture adheres to 
the following framework. The multi-head attention mechanism 
is expressed as: 

CD��	E���(F, G, H)  =  I��@��(ℎ����, . . . , ℎ���K)WM  

where each individual attention head is defined as: 

ℎ���� =  N�����	��(F7� , G7� , H7�)  

The attention function itself operates as: 

N�����	��(F, G, H)  =  O�����)(FGP/√��)H  

where F , G , and H  represent the query, key, and value 
matrices, respectively. The learnable parameter matrices F7, 
G7, H7, and 7R facilitate model optimization. The term �� 
corresponds to the dimension of the key vectors. The final 
output of the attention mechanism is computed using a residual 
connection followed by layer normalization: 

S	���RD��D� = T�"��'���(CUN +  SS')  

where Multi-head Self-Attention (MSA) and the Feed Forward 
Network (FFN) outputs are combined. For the training process, 
the loss function is derived from the masked language model 
objective, defined as: 

C�O(��T���D���C����T�OO =  − ∑ ��� V()	|)̃)�∈W    

where C represents the set of masked token positions, )� is the 
original token, and )̃  denotes the corrupted input sequence. 
This framework ensures effective learning of contextualized 
representations while preserving robust training dynamics. 

G. Evaluation Metrics 

The performance of each model was rigorously evaluated 
using a suite of evaluation metrics. These metrics serve as 
critical mathematical tools for quantifying the effectiveness of 
machine learning models, offering a comprehensive analysis of 
their performance across multiple dimensions, including 
accuracy, precision, and discriminative capacity [31, 32]. These 
metrics form the cornerstone of model evaluation by providing 
quantitative insights, facilitating meaningful comparisons, and 
guiding optimization efforts. Each metric contributes a distinct 
perspective, ranging from fundamental measures of 
classification accuracy to more sophisticated evaluations that 
address challenges such as class imbalance and ranking 
performance [33]. Each model's performance was evaluated 
using the following metrics. 

Accuracy evaluates the proportion of correct predictions 
and is calculated as: 

Accuracy =
^_`^a

^_`^a`b_`ba
  

Precision measures the ratio of correctly predicted positive 
observations to the total predicted positives: 

Precision =  
^_

^_`b_
  

Recall, also known as sensitivity or true positive rate, 
quantifies the ratio of correctly predicted positive observations 
to all actual positives: 

Recall =
^_

^_`ba
  

F1-score is a harmonic mean of Precision and Recall that 
provides a balanced measure for datasets with imbalanced class 
distributions: 

F1 − score =  2 ∗
_lmnopoqr ∗ smntuu

_lmnopoqr`smntuu
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where TP denotes True Positives, TN denotes True Negatives, 
FP denotes False Positives, FN denotes False Negatives, TPR 
is the True Positive Rate, and FPR is the False Positive Rate. 

III. RESULTS AND DISCUSSION 

A. Comparison of Model Performance 

Table I shows the comparative analysis of model 
performance metrics. RoBERTa emerged as the best performer, 
demonstrating exceptional capabilities across all evaluation 
criteria with remarkable scores of 96.20% accuracy, 99.77% 
precision, 96.40% recall, and 98.06% F1-score. LSTM 
achieved 88.37% accuracy, 99.63% precision, 88.65% recall, 
and 93.82% F1-score, while IG-KNN maintained similar 
metrics with 87.17% accuracy, 99.63% precision, 87.45% 
recall, and 93.14% F1-score. Despite achieving high precision 
at 99.74%, the IG-NB model performed lower on other metrics 
with 82.28% accuracy, 82.42% recall, and 90.26% F1-score. 
IG-CART recorded the lowest overall performance with 
80.87% accuracy, 99.47% precision, 81.22% recall, and 
89.42% F1-score. These results show a clear hierarchy in 
model performance, with RoBERTa significantly 
outperforming other models, particularly in maintaining high 
scores across all metrics. In contrast, the remaining models 
showed varying effectiveness with consistently high precision 
but lower accuracy and recall metrics. 

TABLE I.  COMPARISON OF MODEL PERFORMANCE 

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) 

LSTM 91.20 99.64 91.48 95.39 

RoBERTa 96.30 99.77 96.51 98.11 

IG-NB 90.33 99.52 90.72 94.92 

IG-CART 90.98 99.64 91.27 95.27 

IG-KNN 89.24 99.52 89.63 94.31 

 
The RoBERTa model outperformed the others with the 

highest accuracy and F1-score. LSTM also showed strong 
results, achieving notable accuracy and F1-score, while 
traditional models such as NB and DT had lower accuracy and 
recall due to the complexity of the text data. Figure 2 illustrates 
the comparative performance analysis between the LSTM and 
RoBERTa models through their respective confusion matrices. 
The LSTM model demonstrated moderate performance with 
812 correct positive predictions but showed significant 
limitations with 104 false negatives and only one correct 
negative class prediction, alongside three false positives. In 
contrast, the RoBERTa model exhibited superior performance 
across all metrics, accurately predicting 883 positive cases with 
only 33 false negatives while achieving two correct negative 
class predictions with only two false positives. This 
comprehensive comparison reveals RoBERTa's notable 
advantages over LSTM, particularly its ability to maintain 
balanced prediction accuracy across both positive and negative 
classes, making it a more reliable choice for complex 
classification tasks such as sentiment analysis. The stark 
difference in false negative rates (104 for LSTM versus 33 for 
RoBERTa) highlights RoBERTa's enhanced ability to handle 
intricate data patterns and its overall superior performance in 
real-world applications where accurate classification is crucial. 

 

 

Fig. 2.  Confusion matrices for LTSM and RoBERTa. 

B. Performance Comparison of RoBERTa and LSTM Models 

Figures 3 to 6 show a comparative analysis of RoBERTa 
and LSTM, revealing distinct performance patterns and 
learning dynamics across their training epochs. The RoBERTa 
model demonstrated superior performance with more stable 
convergence, showing oscillatory validation loss behavior that 
reached its optimal point (~0.105) at epoch five while 
achieving peak accuracy (~0.965) at epoch 4. The model's 
validation accuracy maintained an upward trend despite a brief 
decline at epoch 1, indicating effective generalization 
capabilities. In contrast, the LSTM model exhibited more 
complex behavioral patterns, with training loss consistently 
decreasing from ~0.8 to ~0.5 while maintaining stable 
validation loss between 0.3 and 0.4. Although LSTM's training 
accuracy steadily improved from ~0.55 to ~0.7, with validation 
accuracy fluctuating between 0.9-1.0, the notable gap between 
training and validation metrics suggested potential overfitting 
issues. Each model exhibited distinct strengths: RoBERTa 
maintained stable convergence, while LSTM effectively 
captured long-term dependencies. RoBERTa showed a more 
balanced performance between training and validation phases 
with smaller loss variations, while LSTM, despite achieving 
high validation accuracy, indicated a need for additional 
regularization strategies to optimize its performance. These 
findings suggest that RoBERTa's architecture is better suited 
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for achieving stable and generalizable results, while LSTM 
might benefit from architectural modifications to address its 
overfitting tendencies. 

 

 
Fig. 3.  Training dynamics (loss) for RoBERTa models over epochs. 

 
Fig. 4.  Training dynamics (accuracy) for RoBERTa models over epochs. 

 
Fig. 5.  Training dynamics (loss) for LSTM model over epochs. 

 

Fig. 6.  Training dynamics (accuracy) for LSTM models over epochs. 

C. Parameter Optimization for RoBERTa and LSTM 

The parameter optimization process for RoBERTa and 
LSTM was carefully conducted to ensure optimal performance 
and mitigate overfitting. For RoBERTa, the learning rate was 

set to 2)10w with a warm-up period covering 10% of the 
training steps, followed by a decay scheduler to stabilize 
convergence. A batch size of 32 and a maximum sequence 
length of 128 tokens were found to balance efficiency and 
contextual coverage. The AdamW optimizer, with a weight 
decay of 0.01 and a dropout rate of 0.1, was employed to 
further enhance generalization. The model was fine-tuned for 5 
epochs, with early stopping applied if validation loss plateaued. 
In the case of LSTM, a learning rate of 1)10<x with adaptive 
reduction was optimal, combined with a batch size of 64 and a 
sequence length of 100 tokens. The LSTM architecture 
incorporated 128 hidden units and utilized a dropout rate of 0.3 
along with a recurrent dropout rate of 0.2 to control overfitting. 
The Adam optimizer facilitated efficient learning, and early 
stopping was employed after 20 epochs if no improvement was 
observed in the validation loss. These optimization strategies 
ensured robust model performance and convergence stability 
for sentiment analysis tasks. 

IV. DISCUSSION 

This study demonstrates the superior performance of the 
RoBERTa model compared to traditional machine learning 
models and LSTM-based deep learning approaches in 
sentiment analysis of Amazon book reviews. RoBERTa 
achieved an accuracy of 96.30% and an F1-score of 98.11%, 
confirming its effectiveness in capturing complex semantic 
relationships. These results align with prior research 
emphasizing the strengths of transformer-based models in 
processing nuanced textual data [5, 28, 34]. 

In contrast, traditional models such as NB, CART, and 
KNN, which rely on feature extraction methods such as TF-
IDF, showed lower accuracy scores ranging from 89.24% to 
90.98%. Although these methods are suitable for basic 
classification tasks, they struggle in capturing contextual 
meaning [6, 35]. For instance, the NB model, despite its high 
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precision (99.52%), exhibited lower recall (90.72%) and an F1-
score of 94.92%, indicating its limited generalization across 
diverse sentiment classes [7, 18, 36]. The LSTM model 
performed better than traditional approaches, achieving an 
accuracy of 91.20% and an F1-score of 95.39%. Its strength 
lies in capturing long-term dependencies in sequential data 
[25]. However, its sequential nature limits scalability and 
efficiency, making it less effective than transformer models 
such as RoBERTa, which process data in parallel. Additionally, 
the LSTM model showed overfitting tendencies, a limitation 
noted in previous studies [26, 27]. Comparative studies [6] 
reinforce RoBERTa's superiority, showing its robustness across 
all evaluation metrics, with an accuracy of 96.20%, precision of 
99.77%, recall of 96.40%, and an F1-score of 98.06%. 
Although LSTM models and IG-based models demonstrated 
competitive precision, they fell short in accuracy and recall. For 
instance, IG-KNN achieved accuracies between 84.98% and 
87.17%, and IG-NB displayed precision above 99% but 
inconsistent accuracy (82.28% to 87.23%). These results 
suggest that although IG-based models are computationally 
efficient, they are best suited for simpler tasks. 

RoBERTa's success can be attributed to its multihead self-
attention mechanism and dynamic masking, allowing it to 
capture semantic complexity without extensive feature 
engineering [28]. This makes it ideal for applications that 
require deep contextual understanding, such as e-commerce 
sentiment analysis, where accurate interpretation of customer 
opinions is critical [37]. However, RoBERTa's high 
computational demands pose challenges for deployment in 
resource-limited environments. Future research should explore 
optimization techniques such as knowledge distillation, model 
quantization, and pruning to reduce resource requirements. 
Furthermore, hybrid models that combine RoBERTa with 
LSTM or GRU have shown promise [5, 8], leveraging 
RoBERTa's contextual strengths with the ability of recurrent 
models to capture temporal dependencies. Expanding this 
research to cross-domain and multilingual datasets could 
further assess RoBERTa's adaptability and scalability. 
Incorporating advanced feature extraction techniques such as n-
grams or word embeddings into traditional models may also 
improve their performance in handling more complex text data. 
In summary, RoBERTa's ability to balance accuracy and 
contextual understanding makes it a powerful tool for 
sentiment analysis tasks. However, trade-offs between 
performance and computational efficiency must be considered 
based on application needs. ROBERTa is ideal for high-
accuracy tasks, while traditional models remain valuable for 
low-resource and real-time scenarios. 

V. CONCLUSION 

This study highlights the superior performance of the 
RoBERTa model in the sentiment analysis of Amazon book 
reviews, achieving an accuracy of 96.30% and an F1-score of 
98.11%. RoBERTa outperformed traditional machine learning 
models (NB, KNN, CART) and deep learning approaches 
(LSTM), demonstrating its exceptional ability to process 
complex and semantically diverse textual data. These findings 
confirm RoBERTa as an ideal tool for practical applications, 
such as e-commerce sentiment analysis and public opinion 

monitoring, where precision in understanding user sentiment is 
critical. The results underscore the transformative potential of 
transformer-based architectures in addressing linguistic 
complexity and imbalanced datasets. However, the study also 
highlights the high computational costs associated with 
RoBERTa, contrasting with the efficiency of traditional models 
and the balanced performance of LSTM models. Future 
research should focus on optimizing RoBERTa's computational 
efficiency using techniques such as model distillation, 
quantization, or hybrid approaches to enhance accessibility for 
broader applications. 

Although this study focused on Amazon book reviews in 
English, the method could be extended to other domains, 
including social media, healthcare, and tourism. Further 
research should evaluate the models on multilingual and cross-
domain datasets to assess their robustness and adaptability to 
diverse linguistic and contextual nuances. Additionally, 
exploring hybrid models that integrate transformer-based 
architectures with sequential models may offer further 
performance improvements. In conclusion, RoBERTa's 
accuracy and contextual processing capabilities establish it as a 
leading model for sentiment analysis. By addressing its 
computational demands and expanding its application to 
different languages and domains, RoBERTa can be a versatile 
and powerful tool for real-world sentiment analysis tasks. 
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