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ABSTRACT 

Axial-Flux Self-Bearing Motors (AFBMs) are distinguished by considerable variations in inductance 

resulting from axial displacement. Conventional controllers are frequently engineered to accommodate a 

wide range of inductance changes. Nevertheless, this methodology is often suboptimal, particularly when 

inductance is not accurately determined. This paper puts forward a novel inductance approximation 

function for the stator, designed to minimize modeling errors. Furthermore, an advanced control strategy 

is presented, based on a sliding mode controller with online adaptive parameter tuning. The experimental 

results demonstrate the efficacy of the proposed control strategy, exhibiting enhanced performance, 

stability, and robustness across a range of operating conditions. 

Keywords-self-bearing motor; Axial-Gap Self Bearing Motor (AGBM) 

I. INTRODUCTION  

Axial-flux motors have attracted considerable research 
attention due to their distinctive advantages. In comparison to 
radial-flux motors, axial-flux motors have been shown to 
generate higher torque, exhibit enhanced efficiency, and 
demonstrate increased power density. These characteristics 
render them particularly well-suited for applications that 
require optimization of space utilization [1]. In addition, in 
specialized applications, axial-flux motors can meet the 
requirements for precise axial positioning adjustments, 
categorizing them as Axial-Gap Self-Bearing Motors 
(AGBMs) [2-6]. The capability to control the axial position 

negates the need for mechanical restraints along the drive axis, 
offering an optimal solution for systems using active magnetic 
bearings [7]. Furthermore, the integration of active magnetic 
bearings with axial-flux self-levitating motors enables the 
attainment of comprehensive rotor control across all six 
degrees of freedom [8]. This integration offers distinct 
advantages, including a reduction in the overall size and an 
enhancement in the motor power density. Axial-flux motor 
configurations are typically classified into three primary 
categories: dual stator-single rotor, dual rotor-single stator, and 
multi-stator multi-rotor systems [3]. The stators, which are 
responsible for generating the magnetic field, typically employ 
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three-phase windings that generate a rotating magnetic field 
along the rotor's axial direction. The motor torque is generated 
by three primary factors: 

 The interaction between the rotor flux and the stator current 
iq. 

 The reluctance torque, arising from the inductance disparity 
between the d-axis and q-axis of the motor. 

 The flux differential across the air gap regions. 

In the configuration of a dual-stator and a single-rotor 
system, incorporating a salient-pole rotor, the contributions of 
the reluctance torque and flux differential across the air gaps 
are negligible. Consequently, this configuration facilitates more 
efficient torque regulation. This study adopts this specific 
motor configuration to maximize the inherent advantages of the 
axial-flux motor design. Despite the structural differences, a 
common feature of these designs is the application of vector 
control techniques [8-12]. Similar to permanent magnet motors, 
the current and flux components in the motor are represented in 
the vector space, where the iq current controls the torque and 
the id current regulates the flux linkage [13]. Field-Oriented 
Control (FOC) algorithms have been effective in torque 
regulation and speed control [11,12]. However, due to the 
nonlinear nature of the magnetic levitation, the control of the 
levitation force remains challenging. A common approach in 
motor control posits a stable operating position of the rotor, 
thereby enabling the linearization or simplification of system 
parameters. In such cases, traditional linear control strategies 
are widely employed [14,15]. Alternatively, nonlinear control 
strategies, proposed in [16-18], offer adaptability to parameter 
variations. However, these methods typically neglect the 
inductance variations along the z-axis of the motor, which can 
considerably influence the efficacy of the control, particularly 
within the current control loop. It is important to note that most 
control strategies assume that the motor starts at its equilibrium 
position, which complicates the accurate modeling of stator 
inductance. Authors in [8], indicate that the relationship 
between the stator inductance and air gap distance is primarily 
determined through experimental observations. As the air gap 
narrows, stator inductance increases sharply, and conversely, it 
decreases as the gap widens. This relationship can be modeled 
using exponential functions. To enhance the estimation 
accuracy of these inductance parameters, various algorithms 
have been examined [19, 20]. The present paper proposes a 
nonlinear backstepping control strategy that incorporates 
inductance variation along the z-axis. In addition, the motor 
model is presented, with an approximation of the stator 
inductance achieved through the use of an exponential 
function. This approximation of the stator inductance facilitates 
system operation across the entire positional range, rather than 
being constrained to a predefined equilibrium point. This 
aspect has not been adequately addressed in prior studies. The 
control architecture is presented including an outer-loop 
controller for speed and position and an inner-loop controller 
for current regulation. The controllers are then implemented on 
the hardware setup to validate the proposed approach. The 
experimental results obtained from this study confirm the 

effectiveness of the proposed control strategy, hence 
demonstrating enhanced stability and improved performance. 

II. MATHEMATICAL MODEL OF THE MOTOR 

The configuration of the motor can be seen in [8]. The 
system is composed of two stators and a rotor that uses 
permanent magnets. The axial position of the rotor is regulated 
by two magnetic bearings, either passive or active, thus 
effectively constraining the rotational angles along the x and y 
axes. In contrast, the rotor maintains flexible mobility along the 
z-axis. The mathematical model of the axial-flux self-levitating 
motor is derived from fundamental electromagnetic principles 
as described in [8]. The electrical model of the motor includes 
two sets of equations: one for stator 1 and another for stator 2, 
formulated in the d-q coordinate framework. 

For stator 1: 

����� = ��	��� + ���� ������ − �����	������� = ��	��� + ���� ������ + ������	��� + ��� (1) 

For stator 2: 

����� = ��	��� + ���� ������ − �����	��� ���� = ��	��� + ���� ������ + ������	��� + ��� (2) 

where, ���1, ���1 are the d-axis and q-axis voltages for stator 1, 
respectively, while usd2 and usq2 are the corresponding voltages 
for stator 2, Rs is the stator resistance of the windings, isd1, isq1, 
isd2, and isq2 are the d-axis and q-axis currents for each stator, ω 
is the angular velocity of the rotor, ψp is the magnetic flux 
produced by the permanent magnets on the rotor, and Lsd1, Lsq1, 
Lsd2, and Lsq2 are the d-axis and q-axis inductances for stator 1 
and stator 2, respectively. The AGBM exhibits two degrees of 
freedom: rotational motion along the z-axis and translational 
motion along the z-axis. Consequently, the dynamic behavior 
of the motor is described by (3) for rotational dynamics and (4) 
for translational motion: 

���  ��(	��� + 	���) + 	���	���(���� − ����)+	���	���(���� − ����) # =  

$% + &� �'��       (3) 

$() + *+ = ,�(	��� − 	���) + ,�(	��� + 	���)( − ,�( (4) 

where ,� = -.�/�
0.� ��, ,� = 2 -.340. ���, ( is the axial position of 

the motor, 5 is the number of the pole pairs of the motor, $ is 
the mass of the rotor, and 6 is the moment of inertia of the 
motor. The structural parameters include N, the number of 
turns per pole in the stator, 70, the nominal air gap distance, 
and μ0, which is the permeability of free space. In the context 
of control design, inductance variations are typically 
disregarded. However, it is imperative to acknowledge that the 
stator inductance exerts a substantial influence on the electrical 
dynamics (1) and (2), as well as the torque of the motor (3). 
Fluctuations in inductance can lead to significant discrepancies 
in control, thereby compromising control accuracy. It is 
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noteworthy that the inductive components exhibit coupled 
variations, either increasing or decreasing in unison: 

9	���	���(���� − ����) = 0	���	���(���� − ����) = 0   (5) 

Substituting (5) into the torque (3) results in: 

��� ��(	��� + 	���) = $% + &� �'��    (6) 

As shown in (6), when the system is designed such that Lsd 
= Lsq, it can be observed that variations in inductance do not 
affect the dynamic equations. Consequently, the effects of 
inductance variations are primarily reflected within the current 
control mechanisms. One potential solution to this challenge 
involves the use of an approximation function, which allows 
for the rapid adaptation of the controller. The inductance of the 
coil has been shown to exhibit an inverse proportionality to the 
air gap distance. Furthermore, the experimental findings 
reported in [9] indicate that its variation can be effectively 
approximated by an exponential function. This function is 
employed to effectively represent the inductance variation 
along the z-axis. It is hypothesized that the motor's inductance 
follows an exponential function: �(() = �;<=>      (7) 

where k is the damping coefficient, with smaller values of , 
resulting in a reduced dependence of inductance on the rotor 
position, corresponding to a z-axis displacement that is much 
smaller than the air gap distance. Conversely, a larger , causes 
a more pronounced variation in the motor’s inductance as the 
rotor position changes. The damping coefficient , and 
inductance �0 are determined through experimental 
measurements conducted directly on the motor under 
investigation. Due to the opposite relative motion of the rotor 
with respect to the two stators, the inductance values of the 
stators vary in opposite directions: 

?���� = ���� = �;<=>
���� = ���� = �;<@=>   (8) 

Equation (8) enables a relatively accurate prediction of the 
motor's inductance, facilitating the rapid adjustment of the 
control signals to counteract a potential instability in controllers 
that do not account for this factor. 

III. PROPOSED CONTROLLER 

Conventional control strategies are not readily conducive to 
the straightforward and expeditious modification of controller 
parameters. Concurrently, the model parameters of the system 
under consideration in this paper exhibit rapid fluctuations. The 
incorporation of the system model into the control signals is 
expedited by a sliding mode controller [21-24]. This paper 
proposes a backstepping sliding mode controller design with 
two control loops: an outer loop consisting of speed and 
position controllers, and an inner loop serving as the current 
controller. 

A. Speed Control 

The speed and position control loops are not affected by the 
variations in stator inductance. Consequently, the controller 

design process is executed in a sequential manner. For the 
purpose of simplification, the variables are redefined and 

reformulated in a matrix form as: ABC = D	��� 	���EF , G =�� (��� . The expression describing the motion of the motor 

becomes: 

�H = >4& �GABC − $%�     (9) 

The Lyapunov function for the system (9) is chosen using: 

I' = �� (� − �J)�    (10) 

where �K is the reference speed. By applying the derivative 
operator to both sides of (10) and substituting the result into 
(9), the following expression is obtained: IH' = (� − �J)(�H − �H J)  

= (� − �J) L>4& �MABC − $%� − �H JN  (11) 

By applying the LaSalle-Yoshizawa theorem, the control 
signal required for the system to reach the reference speed is 
obtained by: 

ABC = G O$% + &>4 ��H J − P'(� − �J)�Q  (12) 

With the current shown in (12), the system is stable. In fact, 
by substituting the control signal (12) into (11), the derivative 
of the Lyapunov function is obtained: IH' = −P'(� − �J)� < 0   (13) 

The derivative of the Lyapunov function in (13) is 
consistently negative, thereby fulfilling the conditions of 
Lyapunov's stability criterion. Consequently, the current Isq in 
(12) is used for the design of the inner control loop, following 
the backstepping methodology. 

B. Position Control 

The bearing force acting on the motor rotor is generated by 
two currents, 	��1 and 	��2, which flow in opposing directions. 
Rather than using 	��1 and 	��2 as independent control variables, 
it is proposed that an intermediate variable be applied, defined 
as the difference between the two currents: ST� = 	��� − 	���    (14) 

The rotor position dynamics (4) is rewritten as: UST� − U�( − *+ = $J()   (15) 

where U = ,� + ,�( , and U� = ,� + 2,�	��� . The 
translational dynamics equation of the motor includes a second-
order derivative term. Consequently, the sliding surface is 
defined as a first-order inertia link: V = W( + (H      (16) 

where λ is the inertia constant of the sliding surface. The 
sliding surface is characterized by two components: the 
position and the first derivative of the position (velocity) of the 
rotor along the axial direction. The sliding mode controller is 
designed to drive these two parameters to zero, under the 
condition that the chosen parameters fulfill the Hurwitz 
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stability criterion. The differentiation of both sides of (16) 
yields the following expression: 

VH = W(H + () = W(H + �%X (UST� − ,�( − *+) (17) 

The control signal of the sliding mode controller comprises 
two components. The first component drives the system's state 
variables towards the sliding surface, as described in (18), 
while the second component ensures the maintenance of the 
state variables on the sliding surface, as given in (19): 

ST��Y = %XZ (−W(H) + �Z ,�( + �Z *+   (18) 

ST�[� = %XZ �−P>�	7\(V)�   (19) 

Consequently, the final control signal is the combination of 
the two aforementioned components, which is expressed by: 

ST� = %XZ �−W(H − P>�	7\(V)� + �Z ,�( + �Z *+   (20) 

The Lyapunov function for the system described in (20) is 
chosen as:  

I> = �� V�     (21) 

By differentiating both sides and substituting (17), the 
resulting expression is: 

IH> = VVH = V OW(H + �%X (UST� − ,�( − *+)Q (22) 

Substituting the control signal (20) into (22) yields:IH> =−P>V. �	7\(V) ≤ 0. Therefore, the employment of the control 
signal (20) enables the system to attain stability and drive the 
rotor position to its equilibrium state. In practical applications, 
an additional current id0 is introduced to enhance system 
stability. The subsequent derivation provides the expression for 
determining the reference current for the inner current control 
loop: 

?	���J[_ = 	�; + ST�	���J[_ = 	�; − ST�    (23) 

which will be used to compute the reference value for the 
current control loop. 

C. Current control 

In order to simplify the relationships between the current 
and voltage for the entire motor, the system of equations 
describing the motor's electrical relations is reformulated in a 
matrix form as: 

`��> ��� AH�� = −aA�� − b + c��  (24) 

where c�� = D��� ���EF ,A�� = D	�� 	��EF ,b = D0 ����E, 

`��> =  ���(() 00 ���(()#, a> =  �� −�����(()�����(() �� #, and 

z is the dependence of inductance on the rotor position. Given 
the symmetric nature of the motor's structure, the controller 
design for the second stator follows a similar approach. The 
implementation of a sliding mode controller enables a seamless 
adjustment of the controller parameters, ensuring an effective 

modulation of system behavior. The error vector d� = A −A��J[_
is defined as the difference between the actual current 

values and the reference current values, where A��J[_ =e	�J[_ 	�J[_f represents the desired dq current values. 

Equation (24) can be reformulated by expressing the state 
variable in terms of the error vector as:  

dH � = `��@��c� − a>d� − b� − `��AH��J[_ − a>A��J[_� (25) 

In the absence of detailed information regarding the motor's 
inductance characteristics, the control signal selection will be 
based on the nominal inductance �0 as a reference parameter. 
By applying the LaSalle-Yoshizawa theorem, the control signal 
is determined as: 

c�� = a>;dH � + b + `��;AH��J[_ + a>;A��J[_ − g>d�  (26) 

where Cz0 and Ldq0 are the Cz and Ldqz matrices at the position (=0, respectively, and Kz is the control gain matrix. To prove 
the stability of the system, the Lyapunov function is chosen as 
follows:  

h� = �� d�Fd�     (27) 

The derivative of both sides of (27) is taken, and by 
substituting the derivative from (25) and the control signal 
from (26), we obtain: 

hH = d�FdiH = d�F`�@�(jkd� + �kAH��J[_ + jkA��J[_ − g>d�(28) 

where ak = a>; − a> = ���;  0 −(1 − <=>)(1 − <=>) 0 # , 

`k = `; − `� = �;(1 − <=>) m1 00 1n, `> = �+.[opq m1 00 1n. 

The matrices j and � represent the discrepancies between 
the actual model and the model utilized for the controller 
design. The substitution of the respective values of these 
matrices into (28) leads to: 

rH� = s�FsH � = s�F L(<@=> − 1)AHJ − `@�g>s�N =(<@=> − 1)d�FAHJtuuuuvuuuuwx; − d�F`@�g>d�tuuvuuwy;    (29) 

Equation (29) demonstrates that a discrepancy between the 
model and the system has a substantial impact on the system, 
particularly during the startup phase when the displacement z is 
substantial and the reference current values undergo significant 
variations. The left-hand side of the expression, characterized 
by an undefined sign and magnitude, has the potential to induce 
instability in the system immediately from the initial point z0. 
Consequently, the control signal in (26) is modified as: 

c�� = �a;d� + b + `>AH��J[_ + a;A��J[_ − U�d�� (30) 

Using L(z), determined in (8), the discrepancy between the 
model's inductance and the actual inductance is approximated 
as zero: 

hH � = d�`@�(`> − `)AH��J[_tuuuuuvuuuuuw≈;
− d�F`@�g>d�tuuvuuwy;   (31) 
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Given that the derivative of the Lyapunov function is less 
than or equal to zero, the system demonstrates asymptotic 
stability, ensuring that the deviation in the current will 
converge to zero over time. Finally, the current controller for 
the two stators is obtained and represented as: 

c� = �a�d�� + b� + `>�AH���J[_ + a�A���J[_ − g>�d��� (32) 

c� = �a�d�� + b� + `>�AH���J[_ + a�A���J[_ − g>�d��� (33) 

In conclusion, the control signals presented in (32) and (33) 
comprise the core methodology for the design of the proposed 
controller, which incorporates the effects of the stator 
inductance variation along the z-axis. The structure of the 
proposed controller is depicted in Figure 1. In this 
configuration, the speed and position controllers function as the 
outer-loop controllers, while the current controllers for stator 1 
and stator 2 serve as the inner-loop controllers. The position 
information obtained from the position sensor is fed back into 
the current controllers, allowing them to adapt to the 
inductance variations occurring during the control process, thus 
ensuring the stability of the system. 

 

 

Fig. 1.  Proposed control structure. 

IV. EXPERIMENTAL RESULTS 

A. AFBM Motor Model 

In order to validate the proposed algorithm, a practical 
motor model was developed, as illustrated in Figure 2. The 
system consists of an AGBM motor featuring two stators and a 
single rotor. The stator's stationary component is engineered to 
move along a linear rail, while the rotor is fixed in position. 
Given the fixed position of the rotor, a distance sensor with a 
resolution of 2,000 µm is employed to measure the stator's 
position. The motor shaft is connected to an encoder with a 
resolution of 500 ppr to measure the rotor's speed and angular 
position. Additionally, a DC motor is employed to generate the 
load torque. The motor parameters are detailed in Table I. In 
order to reduce the possibility of overheating, which could 
result in motor failure, the converter is constrained to a 
maximum current of 5A. Consequently, the configuration of 
the controller parameters is structured in a manner that ensures 

that this restriction does not impose a substantial burden on the 
system's dynamic response characteristics. The inductance 
variation function (() is constructed through direct 
measurements on the model, as displayed in Figure 3. 
Subsequently, using the fitting tool in MATLAB, the 
parameters in (8) are determined, with ,( = 0.23 and �0 =8.2 
mH. Substituting these values into the expression, the 
approximated function representing the relationship between 
inductance and the rotor’s axial position z is: ��� = ��� = 8.2 ~ 10@�<;.��>(�)   (34) 

Finally, the controllers are implemented on the MATLAB 
software and ControlDesk, with hardware integration utilizing 
the DS1104 system from dSPACE. 

 

 
Fig. 2.  Experimental setup of the AFBM. 

TABLE I.  PARAMETERS OF MOTOR 

Parameter Value Unit 

Stator resistance Rs 2.3 Ω 

d-axis inductance at z = 0 8.2 mH 

q-axis inductance at z = 0 8.2 mH 

Rotor magnetic flux ψp 0.0126 Wb 

Mass of rotor m 0.235 kg 

Rotor moment of inertia J 8.2×10-6 kgm2 

Pole pair p 1  

 

 
Fig. 3.  The results of inductance measurement with respect to the air gap. 

B. Experimental Results 

In order to validate the proposed control model, an 
experimental scenario was designed with two cases: 
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 The sliding mode controller is designed using the initial 
model without the approximation function L(z). 

 The proposed sliding mode controller utilizes the 
approximation function L(z). 

The motor is initialized with a starting position of z = 0.5 
mm and an initial speed of zero to test the position stabilization 
capability. After one second, the motor speed is set to w = 100 
rad/s, and after three seconds, a load torque of T = 0.5 Nm is 
applied. As presented in Figure 4, the absence of the 
approximation function L(z) in the controller design results in a 
substantial increase in position instability. These position 
oscillations subsequently result in variations in inductance, 
which in turn directly affect the current control loop and, by 
extension, induce current oscillations. The acceleration of the 
motor introduces cross-coupling noise to the position control 
loop, particularly at 1s. This phenomenon can be attributed to 
the variation in inductance with respect to the position, which 
in turn causes cross-coupling effects between the speed and 
position control loops. As shown in Figure 5, the oscillations in 
position lead to significant fluctuations in speed. The variation 
in inductance along both the d- and q-axes introduces a delay in 
the current controller's response when designed assuming 
constant inductance, thereby intensifying torque oscillations. 

 

 

Fig. 4.  Experimental results of rotor position. 

 
Fig. 5.  Experimental results of motor speed. 

In contrast, the proposed controller demonstrates the 
capacity to expeditiously adapt to the inductance variations, 
hence effectively mitigating the current oscillations. Moreover, 
Figure 4 reveals that the cross-coupling effect between the 
speed control loop and the position control loop is negligible, 
therefore substantiating the efficacy of the proposed control 
scheme. The experimental results for the currents in stator 1 
and stator 2, in scenarios where the variation in inductance is 
not accounted for, exhibit markedly inferior performance, as 
portrayed in Figures 6 and 7. Specifically, the current 
oscillations are notably larger, with fluctuations reaching up to 
3A for the id current. 

 

 
Fig. 6.  Experimental results of the idq current for stator 1 using the SMC 

without considering the variation of inductance L(z). 

 

Fig. 7.  Experimental results of the idq current for stator 2 using the sliding 

mode controller without considering the variation of inductance L(z). 

In addition, the oscillation in the id current is significantly 
reduced to approximately 1 A, as shown in Figures 8 and 9. 
Furthermore, the controller's inherent capacity to adapt to 
inductance variations is evidenced by the experimental 
findings, which demonstrate the absence of cross-coupling 
effects between the speed and position control loops. The 
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experimental findings have elucidated the impact of the 
inductance variation on the performance of the controllers. The 
experimental results indicate that the proposed controller 
enhances the quality of the response for the position along the 
z-axis and improves the dynamics of the speed loop. 

 

 

Fig. 8.  Experimental results of the idq current for stator 1 using the SMC 

considering the variation of inductance L(z). 

 
Fig. 9.  Experimental results of the idq current for stator 2 using the SMC 

with considering the variation of inductance L(z). 

V. CONCLUSIONS 

Axial-Flux Self-Bearing Motors (AFBMs) are 
distinguished by their variable inductance during operation. 
The current paper presents a simplified function to address this 
issue, with the objective of enhancing the system's overall 
performance. In addition, a proposal for the design of control 
systems has been put forth, resulting in the development of a 
control structure that takes into account the changes in the 
system's inductance. A motor model has been introduced and 
its validity has been demonstrated through experimental trials 
under two conditions: with and without considering the 
variation in inductance within the controller. The experimental 
results have demonstrated the efficacy of the proposed control 

approach by mitigating the coupling effects caused by the 
inductance variations and stabilizing oscillations. However, the 
inductance function presented in the paper is based on the 
experimental results from a specific motor, which poses 
challenges in the design of a controller that can be universally 
applied to any arbitrary system. Future research could focus on 
refining the approximation function to entirely eliminate model 
discrepancies or on implementing an online identification of 
these inductances for further optimization. 
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