
Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 20279-20284 20279

www.etasr.com Mechri et al.: Design and Implementation of a ROLAP Cube in Scalable Distributed Data Structure

Design and Implementation of a ROLAP Cube
in Scalable Distributed Data Structure

Amel Mechri

LEPCI Laboratory, Ferhat Abbas Setif 1 University, Algeria
amel.mechri@univ-setif.dz (corresponding author)

Bilal Bouaita

Salah Boubnider Constantine 3 University, Algeria | LEPCI Laboratory, Setif 1 University, Algeria
bilal.bouaita@univ-constantine3.dz

Djamel Eddine Zegour

LCSI Laboratory, High School of Computer Science (ESI), Algiers, Algeria
d_zegour@esi.dz

Walid Khaled Hidouci

LCSI Laboratory, High School of Computer Science (ESI), Algiers, Algeria
w_hidouci@esi.dz

Received: 21 November 2024 | Revised: 14 December 2024 | Accepted: 4 January 2025

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.9648

ABSTRACT

The Scalable Distributed Data Structure (SDDS) is a data model specifically designed for distributed

environments. An SDDS file comprises records that are dynamically distributed across servers using an

SDDS algorithm. A notable feature of SDDS is the removal of a centralized addressing component,

simplifying client-server communication and reducing both the message count and data access time in

distributed systems. This work also explores a Data Warehouse (DW) within a decision support system,

where multidimensional data are represented as a cube and managed through Relational Online Analytical

Processing (ROLAP). Although extensive research has been conducted in both the data warehousing and

SDDS fields, no prior studies have combined these two areas. This paper introduces a novel approach to

implementing a ROLAP cube within an SDDS using the Linear Hashing algorithm (LH*), which

eliminates centralized addressing, enabling direct client-server communication and improving

performance by reducing inter-site message exchanges. This work demonstrates the feasibility of this

method and its positive impact on data processing efficiency in distributed systems.

Keywords-SDDS; dynamic linear hashing; linear hashing algorithm LH*; data warehouse; ROLAP cube

I. INTRODUCTION

The Scalable Distributed Data Structure (SDDS) is a
concept that emerged in 1993, designed for multicomputers,
particularly networks of interconnected workstations [1]. This
type of data structure opened an important research area, as
transparent data management is fundamental in computer
networks [2]. SDDS is intended to be dynamic, with the
number of nodes to which the file is distributed adapting to the
amount of data stored. It is also scalable, meaning that the data
can expand tremendously in size while maintaining usability
and performance [3]. This requirement reflects the expectation
that the size of application data will grow (or shrink)
substantially over time [4].

An SDDS file consists of records distributed across the
servers of a multicomputer and stored in buckets. Each record

is identified by a unique key and each server handles a unique
bucket with a fixed capacity. When a bucket reaches its
capacity and a new record is assigned to it, it becomes
overloaded. To address this, the server initiates a split
operation, transferring half of the keys to a new server to make
the file scalable. The server sites are accessed by autonomous
clients, each having its own file image (information about the
distribution of records in buckets) and being unaware of the
existence of the other clients.

The main performance measure of a given operation in the
SDDS paradigm is the number of point-to-point messages
exchanged by the sites of the network to perform the operation
[5]. The client uses its own addressing scheme to calculate the
record's address and access to servers. For this reason, a
centralized addressing component is not needed. This provides

Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 20279-20284 20280

www.etasr.com Mechri et al.: Design and Implementation of a ROLAP Cube in Scalable Distributed Data Structure

high performance by reducing the number of exchanged
messages and the access time to distributed data, and evidently
avoiding a bottleneck. Another measure of performance for a
particular operation in the SDDS paradigm is the access time to
the data. SDDSs are stored in the distributed main memory of
the servers, which helps to reduce the access time compared to
data stored in local disks.

To distribute data well on servers, three main techniques
have been used to implement different SDDS approaches,
including hashing-based using the LH* algorithm [1, 6-8] and
its different variants, such as LH*LH [9, 10], LH*RS [11, 12],
LH*RS in P2P [13, 14], EH*RS [15], IH* [16], LH*TH [17],
LH* TT [18], interval-based [19-20], and digital-hashing-based
[2] approaches. Linear hashing is an efficient and widely used
version of extensible hashing [6]. The first SDDSs were
primarily based on dynamic hashing with the work of W.
Litwin, who proposed a generalization of his well-known and
popular method (LH) for a distributed environment, more
precisely for multicomputers [2]. LH* is its distributed version
that stores key-value pairs on up to hundreds of thousands of
sites in a distributed system. LH* implements the dictionary
data structure efficiently by not using a centralized component
and allows key-based operations such as insert, delete, update,
and retrieve, as well as the scan operation [6]. Thereafter,
several variants of LH* have been proposed, each improving a
certain aspect of the method [2].

This study aimed to implement a ROLAP cube [21-25] in a
distributed context based on the multidimensional SDDS LH*
model:

 The logical data model is represented using a star scheme,
characterized by a very large central fact table linked to
smaller dimension tables.

 The physical implementation of data is organized into a
ROLAP cube utilizing a relational model (relational
databases).

 The data distribution across servers is managed using the
LH*.

II. RELATED WORKS

The SDDS provides essential frameworks for efficiently
managing data in distributed systems, ensuring scalability and
performance. The first and most widely used SDDS algorithm
was LH*. Since then, several models have been proposed
reflecting the evolution and growing application of SDDS in
various fields. For example, the LH*LH structure was
introduced to improve performance on switched
multicomputers [10], while linear hashing LH*LH was
optimized on Windows NT [9]. SDDS usage was expanded to
the SD-SQL Server database system [1]. LH*RS P2P enabled
SDDS applications in peer-to-peer systems [13], and was later
reinforced for churn resistance [14]. In [20], the efficiency of
SDDS-based hierarchical HDHT structures was demonstrated
for resource discovery in data grids, which is essential for
scientific computing.

LH*TH [17] offers a fast and scalable structure, ideal for
applications requiring high-throughput data access. In [5],

SDDS was enhanced with an order-preserving model for
efficient data management, known as ADST. Furthermore, the
study in [18] contributed to the LH*TT model for temporal
transaction scalability, while in [4] data integrity was
emphasized by maintaining and verifying parity within SDDS.

SDDSs have also prioritized fault tolerance and high
availability, as shown in the LH*RS and EH*RS models [11,
12, 15]. EH*RS ensures high availability by organizing data
into record groups and applying Reed-Solomon error-
correcting codes. In [7, 8], fault tolerance was strengthened
with a decentralized record placement for LH*-based SDDS.
Scalable Distributed Compact Trie Hashing (CTH*) [2]
combines trie and hashing structures for efficient hierarchical
data management. In [16], IH* was introduced, which is a new
multidimensional SDDS based on hashing.

Three main techniques have been used to implement
various SDDS approaches and distribute records across
different servers. The first technique is distribution by hashing
(linear hashing), where a hashing function is used to distribute
data, with algorithms such as LH*, DDH*, EH*, and IH* [14].
The second technique is distribution by interval (range
partitioning), where addresses are represented in a tree
structure, and interval partitioning is performed in an ordered
way according to the primary key. The algorithms used in this
approach include RP*n, RP*c, RP*s, DRT, BDST, K-RP*
[19], and LDT. The third technique, digital hashing, combines
the simplicity and efficiency of hashing with the ordered record
distribution characteristic of interval partitioning, using
algorithms such as TH, CTH, and CTH* [2, 19].

In the context of data storage, access is managed by a
Distributed Database Management System (DDBMS) [22].
Fact and dimension tables are managed as distributed
databases, with inter-site communication facilitated by an
intermediate central site known as the coordinator. This
coordinator handles all communications between distributed
sites and operates under a high workload to maintain these
connections.

However, the centralization of inter-site coordination
presents several major drawbacks in a distributed system. First,
the coordinator can become a bottleneck, as all site-to-site
communications must pass through it, leading to increased
latency and reduced overall system throughput. This
centralized approach also creates a single point of failure: if the
coordinator experiences downtime, communication across the
network is disrupted, compromising the system's availability
and reliability. Moreover, the coordinator's central role in
message routing and coordination can pose scalability issues,
as the system may struggle to handle an increasing volume of
messages or queries as the number of sites grows. As the
coordinator's workload intensifies, its performance degrades,
directly impacting the system's overall efficiency and response
time.

III. THE PROPOSED APPROACH: SDDS_DW

This section presents Data Warehouse-based Scalable
Distributed Data Structures (SDDS_DW) for the dynamic
distribution of a file over servers over time and with increasing
size (i.e. a record can change location and server). The

Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 20279-20284 20281

www.etasr.com Mechri et al.: Design and Implementation of a ROLAP Cube in Scalable Distributed Data Structure

proposed system is built on the same architecture as in classical
data warehouses (based on MySQL): client, server(s), and
coordinator (see Figure 1). However, there are major
differences in the role of the coordinator.

Fig. 1. The general architecture of the SDDS_DW system.

1) Client

The client sends insert or search queries to a server, which
responds with a confirmation message for an insert query or a
set of records for a search query. The client communicates
directly with the server. It has its own image that collects
information about the active server (address, communication
port number).

2) Server

The rest of this article uses the term server instead of
bucket. In the SDDS_DW system, there is initially a single-
server site that can hold a limited number of records from the
fact table. Records are stored in buckets (a bucket can contain �
records). If the active server is overloaded (i.e. its storage
capacity is exceeded when it manages � keys and a new record
is assigned to it), new servers are added to host new records.
The records are redistributed to the new servers by applying the
LH* algorithm. Each server is identified by a logical number,
an address, the port communication number, the total storage
capacity, the storage space available for inserting new records,
an indicator designating the active server, and another
designating the server that will receive the new data records
when the active server is exhausted.

3) The Coordinator

In an SDDS architecture, the coordinator only intervenes
when an overflow occurs. It is the only one to have a correct
image of the LH* file [8] and never intervenes in the query
evaluation process [20]. The main functions of the coordinator
are as follows [8]:

 Collects information about servers and implements file
scaling strategy by maintaining an SDDSServers table
containing the list of servers that store file records with
their parameters.

 Maintains real LH* file parameters: The coordinator
manages another table "Parameters". Grouping information
(i, n, and N) is used to calculate record addresses during
overflows to distribute them to the corresponding server.

 Controlls file splits and finds a new data server: Sends a
split message to the server pointed with an n pointer.
Receives split committing messages and updates file
parameters.

B. Inserting a Query into the Fact Table

To insert or add one or more records, the client (which has
its own image) extracts the parameters of the active server.
Communication takes place directly between the client and the
server without going through the coordinator. If there is no
addressing error, i.e., the communicated server is actually the
active server, there can be two cases: (i) the available storage
space of the active server is greater than the number of records,
and (ii) the available storage space of the active server is less
than the number of records.

Note that an addressing error occurs if the information
about the active server is not updated, so the actual values of
the active server in the client's image do not match with the real
values of the active server and, therefore, a query is sent to the
wrong server. This information changes during overflows,
where the active state passes from one server to another.

i. The available storage space of the active server is greater
than the number of records: The client sends an insert
query to add new records directly to the active server. The
latter inserts them at his level and sends an insert
confirmation message to the client.

ii. The available storage space of the active server is less
than the number of records: Upon receiving the query, the
server checks whether there is enough storage space to
add all the new records. If the number of records is
greater than the available storage space, an overflow
occurs, and the active server contacts the coordinator by
sending it an informative message. The coordinator
extracts the address of the next server (server to be split)
from its SDDS Servers table and sends it a split request
message. The server in the overflow is not the server to be
split, but the server with point �. Figure 2 illustrates the
overflow scheme and server split.

Fig. 2. Scheme of overflow and split of a server.

Each record has a key that is used to calculate its address.
In the event of an overflow, the hash function ℎ� is used to
calculate the addresses of all records (new and already stored

Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 20279-20284 20282

www.etasr.com Mechri et al.: Design and Implementation of a ROLAP Cube in Scalable Distributed Data Structure

on the next server), and about half of the records are transferred
to a new server.

ℎ�(�) = � �� � ∗ 2�

where � is the record key, � is the file level (� = 0, 1, 2, 3, …),
and � represents the number of buckets, initialized to 1.

The hashing function ℎ��� , defined by ℎ���(�) =
� �� � ∗ 2��� , is applied to the records transferred to the
new server as seen in Algorithm 1. After all records have been
added to either the next server or the new server, a
confirmation message is sent to the client. The coordinator
updates the parameters: active and next server, �, � (� is the
split pointer, indicating the next bucket to split and takes values
0, 1, 2, 3, …) and �. The new server will be the active server.
The address of the next server is calculated by applying
Algorithm 2.

Algorithm 1: Computation of the address of

the new data set

1: � = ℎ�(�) // a is a bucket number

2: If (� < �)

3: � = ℎ���(�)
4: Endif

The function ℎ� is applied to calculate the record's address

�. If � is less than n, it means that the record of key � belongs
to a bucket that has already been split, and therefore, the
function ℎ��� is applied to recalculate the record's address.

After each split, the counter � is incremented by 1 to
indicate the address of the next bucket to split. The split of
buckets in LH* occurs in a cyclical manner. � consecutively
takes the values : 0 . . . � − 1, 0 . . . 2 ∗ � − 1.

If = 2� ∗ � , then the total number of buckets has been
exceeded, � is then reset to 0 (to point to the first bucket), and
file level � is incremented. The new addressing function will be
ℎ��� instead of ℎ� .

Algorithm 2: Algorithm of updating the

file level � and the split pointer �
1: Create a new bucket

 // Recalculate the addresses of all

 keys of the bucket �

2: � = � + 1

3: If (� >= 2� ∗ �)

4: � = 0

5: � = � + 1
6: Endif

C. Fact Search Query on the Fact Table

The client sends its search query to all the servers in
multicast after it has extracted their parameters from its local
table. Servers send their responses to the client, which
recomposes them using a union operation. If the search query
concerns a single record, the client calculates its address with
the hash function to find its location (the hosting server). In this
case, the request is sent only to the specified server. If there is

an addressing error, the contacted server forwards the request
to the correct server.

Algorithm 3: Search query algorithm

// Recalculate the addresses of all keys

 of the bucket �
1: �′ = ℎ�(�)

2: If (�′ = �)

3: Accept �
4: else

5: ��� = ℎ� �(�)
6: EndIf

7: If (� < �′′) and (�′′ < �′)

8: �′ ← �′′

9: Send � to the bucket �′
10: Endif

When a bucket receives a research request, it calculates the

address using its parameters (the level #). If the address is the
same, the bucket accepts the record, else it applies ℎ� � to
calculate the address.

IV. RESULTS AND DISCUSSION

This section presents the evaluation of the proposed
approach using two well-known performance measures: the
number of point-to-point messages exchanged by the sites of
the network to perform the operation and the access time to the
data. The advantage of SDDS_DW is that communication is
performed directly between the client and the server without
passing through an intermediate site, reducing the number of
exchanged messages and the required time to execute a query.

A. Description of the Tested Data Model

The logical data model is represented according to the
following star scheme.

Fig. 3. A data model in star scheme.

The central fact table Sale relies on the dimension tables
SalePoint, Car, and Date with foreign keys. All queries are
directed to the fact table Sale, which undergoes new inserts or
searches.

B. Comparison of the Number of Exchanged Messages

The number of exchanged messages is the first metric to
demonstrate the performance of a system. Tables I and II show

Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 20279-20284 20283

www.etasr.com Mechri et al.: Design and Implementation of a ROLAP Cube in Scalable Distributed Data Structure

the number of exchanged messages between the client, servers,
and the coordinator in the classic DW and the proposed
approach.

TABLE I. NUMBER OF EXCHANGED MESSAGES IN A
CLASSIC DW

Client -

Coordinator

Server -

Coordinator
Total

Search query 2 2*nb 2+2*nb
Insert query without overflow 2 2 4

Insert query with overflow 2 2 or 4 4 or 6

TABLE II. NUMBER OF EXCHANGED MESSAGES IN
SDDS_DW

Server -

Server

Client -

Server

Server -

Coordinator
Total

Search query -- 2*nb -- 2*nb
Insert query without overflow -- 2 -- 2

Insert query with overflow 2 3 3 8
��: Number of servers in the system that hold data.

The above tables show that the coordinator in a classic DW

is overloaded because any communication or message
exchanged between the client and a server necessarily passes
through the server. If a significant amount of exchange traffic
occurs, the coordinator becomes a bottleneck. Additionally, any
failure of the coordinator will block communication between
the client and servers. However, the number of exchanged
messages between the client and servers in a classic DW is two
times higher than that required in SDDS_DW for search or
insert queries without overflow. In SDDS_DW, 2*nb and 2
messages are needed for a search or insert query without
overflow, compared to 2 + 2*nb + 4 messages in a classic DW.

The issue in SDDS_DW arises with insert queries with
overflow when records must be transferred between servers. In
this case, messages are exchanged not only between the servers
and the coordinator but also between servers, increasing the
number of exchanged messages.

C. Comparison of the Access Time to Data

The second metric for demonstrating system performance is
the time it takes to access data from sending a query to
receiving the results. The curves below indicate the time taken
to execute a search or insert queries with and without overflow.

Fig. 4. Search in a DW.

Fig. 5. Insertion in a DW without overflow.

Fig. 6. Insertion in a DW with overflow.

As shown by the search query execution time curves, the
time required for SDDS_DW is significantly shorter than that
of a classic DW, with the time in SDDS_DW being reduced by
more than half compared to a classic DW. This improvement is
because, in SDDS_DW, communication occurs directly
between the client and servers without the intervention of the
coordinator. For an insert query without overflow, the
execution time in SDDS_DW matches that of a classic DW.
Furthermore, SDDS_DW enables direct client-server
communication, thereby eliminating the need for a coordinator.

However, a primary drawback of SDDS_DW is the
substantial execution time required for an insert query when a
server becomes overloaded. In such cases, additional message
exchanges occur between the client and the server, the server
and the coordinator, and between the servers, significantly
increasing the query execution time. This delay is further
exacerbated by the need to recalculate the record addresses and
redistribute them to a new server.

V. CONCLUSION

This study implemented a classic DW and a new approach
using the SDDS_DW model with the LH* algorithm. A key
advantage of SDDS is the absence of a centralized addressing
component, allowing direct client-server communication that
enhances performance by reducing message exchanges across
multiple sites. The results show that for search or insert queries
without overflow, SDDS_DW outperforms the classic DW in
terms of fewer messages exchanged and faster query execution
times. However, SDDS_DW faces a limitation when handling
insert queries with overflow, as it requires more message
exchanges and longer execution times due to the recalculation
and redistribution of record addresses.

To address the overflow issue, a storage threshold setting is
proposed for each server, triggering the redistribution of

Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 20279-20284 20284

www.etasr.com Mechri et al.: Design and Implementation of a ROLAP Cube in Scalable Distributed Data Structure

records before new insert queries are processed, thereby
enabling periodic DW updates independent of client-initiated
inserts. Future work will focus on resolving addressing errors
and query redirection. In addition, alternative distribution
methods, such as interval-based distribution or digital hashing,
will be explored to implement the ROLAP cube and compare
them to identify the most effective approach and optimal
algorithm.

REFERENCES

[1] W. Litwin, S. Sahri, and T. Schwarz, "An Overview of a Scalable
Distributed Database System SD-SQL Server," in Flexible and Efficient
Information Handling, 2006, pp. 16–35, https://doi.org/10.1007/
11788911_2.

[2] D. E. Zegour, "Scalable distributed compact trie hashing (CTH*),"
Information and Software Technology, vol. 46, no. 14, pp. 923–935,
Nov. 2004, https://doi.org/10.1016/j.infsof.2004.04.001.

[3] E. Erturk and K. Jyoti, "Perspectives on a Big Data Application: What
Database Engineers and IT Students Need to Know," Engineering,
Technology & Applied Science Research, vol. 5, no. 5, pp. 850–853,
Oct. 2015, https://doi.org/10.48084/etasr.592.

[4] D. Cieslicki, S. Schaeckeler, and T. Schwarz, "Maintaining and checking
parity in highly available Scalable Distributed Data Structures," Journal
of Systems and Software, vol. 83, no. 4, pp. 529–542, Apr. 2010,
https://doi.org/10.1016/j.jss.2009.10.013.

[5] A. Di Pasquale and E. Nardelli, "A Very Efficient Order Preserving
Scalable Distributed Data Structure," in Database and Expert Systems
Applications, 2001, pp. 186–199, https://doi.org/10.1007/3-540-44759-
8_20.

[6] J. Chabkinian and T. J. E. Schwarz SJ, "Fast LH*" International Journal
of Parallel Programming, vol. 44, no. 4, pp. 709–734, Aug. 2016,
https://doi.org/10.1007/s10766-015-0371-8.

[7] G. Łukawski and K. Sapiecha, "Fault Tolerant Record Placement for
Decentralized SDDS LH*," in Parallel Processing and Applied
Mathematics, 2008, pp. 312–320, https://doi.org/10.1007/978-3-540-
68111-3_33.

[8] K. Sapiecha and G. Lukawski, "Fault-Tolerant Protocols for Scalable
Distributed Data Structures," in Parallel Processing and Applied
Mathematics, 2006, pp. 1018–1025, https://doi.org/10.1007/
11752578_123.

[9] F. Bennour, A. Diène, Y. Ndiaye, and W. Litwin, "Scalable and
distributed linear hashing LH∗ LH under Windows NT," in
Proceeddings of the IEEE Fourth World Multiconference: Systems
Cybernetics & Informatics and Information Systems Analysis &
Synthesis, Orlando, FL, USA, 2000, pp. 23–26.

[10] J. S. Karlsson, W. Litwin, and T. Risch, "LH*lh: A scalable high
performance data structure for switched multicomputers," in Advances in
Database Technology — EDBT ’96, 1996, pp. 573–591,
https://doi.org/10.1007/BFb0014179.

[11] W. Litwin, R. Moussa, and T. J. E. Schwarz, "LH*RS: a highly available
distributed data storage," in Proceedings of the Thirtieth International
Conference on Very Large Databases - Volume 30, Toronto, Canada,
May 2004, pp. 1289–1292.

[12] W. Litwin, "LH*RS: A Highly Available Distributed Data Storage," in
Proceedings of the 30th VLDB Conference, Toronto, Canada, Jan. 2004.

[13] W. Litwin, H. Yakouben, and T. Schwarz, "LH*RSP2P: a scalable
distributed data structure for P2P environment," in Proceedings of the
8th international conference on New technologies in distributed systems,
New York, NY, USA, Mar. 2008, pp. 1–6, https://doi.org/10.1145/
1416729.1416731.

[14] H. Yakouben and S. Soror, "LH*RSP2P: a fast and high churn resistant
scalable distributed data structure for P2P systems," International
Journal of Internet Technology and Secured Transactions, vol. 2, no. 1–
2, pp. 5–31, Jan. 2010, https://doi.org/10.1504/IJITST.2010.031470.

[15] X. Ren and X. Xu, "EH*RS: A High-Availability Scalable Distributed
Data Structure," in Algorithms and Architectures for Parallel

Processing, 2007, pp. 188–197, https://doi.org/10.1007/978-3-540-
72905-1_17.

[16] D. Boukhelef and D. E. Zegour, "IH* : A New Hash-Based
Multidimensional SDDS," presented at the WDAS 2002.

[17] M. Aridj, "LH* TH: New fast Scalable Distributed Data Structures
(SDDSs)," International Journal of Computer Science Issues (IJCSI),
vol. 11, no. 6, pp. 123-128, 2014.

[18] M. N. Issaoui and R. Bouaziz, "SDDS LH* TT: Une solution pour la
scalabilité d’une relation temporelle de transaction standard," presented
at the 5th International Conference: Sciences of Electronic,
Technologies of Information and Telecommunications, Mar. 2009.

[19] M. Maabed, N. Dennouni, and M. Aridj, "Optimizing Data Availability
and Scalability with RP*-SD2DS Architecture for Distributed Systems,"
Engineering, Technology & Applied Science Research, vol. 14, no. 5,
pp. 16178–16184, Oct. 2024, https://doi.org/10.48084/etasr.8176.

[20] R. Mokadem, F. Morvan, and A. Hameurlain, "SDDS Based
Hierarchical DHT Systems for an Efficient Resource Discovery in Data
Grid Systems," in The Semantic Web: ESWC 2012 Satellite Events,
2015, pp. 327–342, https://doi.org/10.1007/978-3-662-46641-4_25.

[21] K. Boukhalfa, Support de cours Entrepôts et fouille de données,
Université des sciences et de la Technologie Houari Boumediene
USTHB, Alger, Algeria, 2024.

[22] L. Chouder, "Entrepôt Distribué de Données," M.S. Thesis, Institut
National d’Informatique, INI, Alger, Algeria, 2007.

[23] M. F. Masouleh, M. A. A. Kazemi, M. Alborzi, and A. T. Eshlaghy, "A
Genetic-Firefly Hybrid Algorithm to Find the Best Data Location in a
Data Cube," Engineering, Technology & Applied Science Research, vol.
6, no. 5, pp. 1187–1194, Oct. 2016, https://doi.org/10.48084/etasr.702.

[24] M. T. Özsu and P. Valduriez, Principles of Distributed Database
Systems. Springer International Publishing, 2020.

[25] A. Vaisman and E. Zimányi, Data Warehouse Systems: Design and
Implementation. Springer, 2022.

