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ABSTRACT 

The Scalable Distributed Data Structure (SDDS) is a data model specifically designed for distributed 

environments. An SDDS file comprises records that are dynamically distributed across servers using an 

SDDS algorithm. A notable feature of SDDS is the removal of a centralized addressing component, 

simplifying client-server communication and reducing both the message count and data access time in 

distributed systems. This work also explores a Data Warehouse (DW) within a decision support system, 

where multidimensional data are represented as a cube and managed through Relational Online Analytical 

Processing (ROLAP). Although extensive research has been conducted in both the data warehousing and 

SDDS fields, no prior studies have combined these two areas. This paper introduces a novel approach to 

implementing a ROLAP cube within an SDDS using the Linear Hashing algorithm (LH*), which 

eliminates centralized addressing, enabling direct client-server communication and improving 

performance by reducing inter-site message exchanges. This work demonstrates the feasibility of this 

method and its positive impact on data processing efficiency in distributed systems. 

Keywords-SDDS; dynamic linear hashing; linear hashing algorithm LH*; data warehouse; ROLAP cube 

I. INTRODUCTION  

The Scalable Distributed Data Structure (SDDS) is a 
concept that emerged in 1993, designed for multicomputers, 
particularly networks of interconnected workstations [1]. This 
type of data structure opened an important research area, as 
transparent data management is fundamental in computer 
networks [2]. SDDS is intended to be dynamic, with the 
number of nodes to which the file is distributed adapting to the 
amount of data stored. It is also scalable, meaning that the data 
can expand tremendously in size while maintaining usability 
and performance [3]. This requirement reflects the expectation 
that the size of application data will grow (or shrink) 
substantially over time [4]. 

An SDDS file consists of records distributed across the 
servers of a multicomputer and stored in buckets. Each record 

is identified by a unique key and each server handles a unique 
bucket with a fixed capacity. When a bucket reaches its 
capacity and a new record is assigned to it, it becomes 
overloaded. To address this, the server initiates a split 
operation, transferring half of the keys to a new server to make 
the file scalable. The server sites are accessed by autonomous 
clients, each having its own file image (information about the 
distribution of records in buckets) and being unaware of the 
existence of the other clients. 

The main performance measure of a given operation in the 
SDDS paradigm is the number of point-to-point messages 
exchanged by the sites of the network to perform the operation 
[5]. The client uses its own addressing scheme to calculate the 
record's address and access to servers. For this reason, a 
centralized addressing component is not needed. This provides 
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high performance by reducing the number of exchanged 
messages and the access time to distributed data, and evidently 
avoiding a bottleneck. Another measure of performance for a 
particular operation in the SDDS paradigm is the access time to 
the data. SDDSs are stored in the distributed main memory of 
the servers, which helps to reduce the access time compared to 
data stored in local disks. 

To distribute data well on servers, three main techniques 
have been used to implement different SDDS approaches, 
including hashing-based using the LH* algorithm [1, 6-8] and 
its different variants, such as LH*LH [9, 10], LH*RS [11, 12], 
LH*RS in P2P [13, 14], EH*RS [15], IH* [16], LH*TH [17], 
LH* TT [18], interval-based [19-20], and digital-hashing-based 
[2] approaches. Linear hashing is an efficient and widely used 
version of extensible hashing [6]. The first SDDSs were 
primarily based on dynamic hashing with the work of W. 
Litwin, who proposed a generalization of his well-known and 
popular method (LH) for a distributed environment, more 
precisely for multicomputers [2]. LH* is its distributed version 
that stores key-value pairs on up to hundreds of thousands of 
sites in a distributed system. LH* implements the dictionary 
data structure efficiently by not using a centralized component 
and allows key-based operations such as insert, delete, update, 
and retrieve, as well as the scan operation [6]. Thereafter, 
several variants of LH* have been proposed, each improving a 
certain aspect of the method [2]. 

This study aimed to implement a ROLAP cube [21-25] in a 
distributed context based on the multidimensional SDDS LH* 
model: 

 The logical data model is represented using a star scheme, 
characterized by a very large central fact table linked to 
smaller dimension tables. 

 The physical implementation of data is organized into a 
ROLAP cube utilizing a relational model (relational 
databases). 

 The data distribution across servers is managed using the 
LH*. 

II. RELATED WORKS 

The SDDS provides essential frameworks for efficiently 
managing data in distributed systems, ensuring scalability and 
performance. The first and most widely used SDDS algorithm 
was LH*. Since then, several models have been proposed 
reflecting the evolution and growing application of SDDS in 
various fields. For example, the LH*LH structure was 
introduced to improve performance on switched 
multicomputers [10], while linear hashing LH*LH was 
optimized on Windows NT [9]. SDDS usage was expanded to 
the SD-SQL Server database system [1]. LH*RS P2P enabled 
SDDS applications in peer-to-peer systems [13], and was later 
reinforced for churn resistance [14]. In [20], the efficiency of 
SDDS-based hierarchical HDHT structures was demonstrated 
for resource discovery in data grids, which is essential for 
scientific computing. 

LH*TH [17] offers a fast and scalable structure, ideal for 
applications requiring high-throughput data access. In [5], 

SDDS was enhanced with an order-preserving model for 
efficient data management, known as ADST. Furthermore, the 
study in [18] contributed to the LH*TT model for temporal 
transaction scalability, while in [4] data integrity was 
emphasized by maintaining and verifying parity within SDDS. 

SDDSs have also prioritized fault tolerance and high 
availability, as shown in the LH*RS and EH*RS models [11, 
12, 15]. EH*RS ensures high availability by organizing data 
into record groups and applying Reed-Solomon error-
correcting codes. In [7, 8], fault tolerance was strengthened 
with a decentralized record placement for LH*-based SDDS. 
Scalable Distributed Compact Trie Hashing (CTH*) [2] 
combines trie and hashing structures for efficient hierarchical 
data management. In [16], IH* was introduced, which is a new 
multidimensional SDDS based on hashing. 

Three main techniques have been used to implement 
various SDDS approaches and distribute records across 
different servers. The first technique is distribution by hashing 
(linear hashing), where a hashing function is used to distribute 
data, with algorithms such as LH*, DDH*, EH*, and IH* [14]. 
The second technique is distribution by interval (range 
partitioning), where addresses are represented in a tree 
structure, and interval partitioning is performed in an ordered 
way according to the primary key. The algorithms used in this 
approach include RP*n, RP*c, RP*s, DRT, BDST, K-RP* 
[19], and LDT. The third technique, digital hashing, combines 
the simplicity and efficiency of hashing with the ordered record 
distribution characteristic of interval partitioning, using 
algorithms such as TH, CTH, and CTH* [2, 19]. 

In the context of data storage, access is managed by a 
Distributed Database Management System (DDBMS) [22]. 
Fact and dimension tables are managed as distributed 
databases, with inter-site communication facilitated by an 
intermediate central site known as the coordinator. This 
coordinator handles all communications between distributed 
sites and operates under a high workload to maintain these 
connections.  

However, the centralization of inter-site coordination 
presents several major drawbacks in a distributed system. First, 
the coordinator can become a bottleneck, as all site-to-site 
communications must pass through it, leading to increased 
latency and reduced overall system throughput. This 
centralized approach also creates a single point of failure: if the 
coordinator experiences downtime, communication across the 
network is disrupted, compromising the system's availability 
and reliability. Moreover, the coordinator's central role in 
message routing and coordination can pose scalability issues, 
as the system may struggle to handle an increasing volume of 
messages or queries as the number of sites grows. As the 
coordinator's workload intensifies, its performance degrades, 
directly impacting the system's overall efficiency and response 
time.  

III. THE PROPOSED APPROACH: SDDS_DW 

This section presents Data Warehouse-based Scalable 
Distributed Data Structures (SDDS_DW) for the dynamic 
distribution of a file over servers over time and with increasing 
size (i.e. a record can change location and server). The 
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proposed system is built on the same architecture as in classical 
data warehouses (based on MySQL): client, server(s), and 
coordinator (see Figure 1). However, there are major 
differences in the role of the coordinator. 

 

 
Fig. 1.  The general architecture of the SDDS_DW system. 

1) Client 

The client sends insert or search queries to a server, which 
responds with a confirmation message for an insert query or a 
set of records for a search query. The client communicates 
directly with the server. It has its own image that collects 
information about the active server (address, communication 
port number). 

2) Server 

The rest of this article uses the term server instead of 
bucket. In the SDDS_DW system, there is initially a single-
server site that can hold a limited number of records from the 
fact table. Records are stored in buckets (a bucket can contain � 
records). If the active server is overloaded (i.e. its storage 
capacity is exceeded when it manages � keys and a new record 
is assigned to it), new servers are added to host new records. 
The records are redistributed to the new servers by applying the 
LH* algorithm. Each server is identified by a logical number, 
an address, the port communication number, the total storage 
capacity, the storage space available for inserting new records, 
an indicator designating the active server, and another 
designating the server that will receive the new data records 
when the active server is exhausted. 

3) The Coordinator 

In an SDDS architecture, the coordinator only intervenes 
when an overflow occurs. It is the only one to have a correct 
image of the LH* file [8] and never intervenes in the query 
evaluation process [20]. The main functions of the coordinator 
are as follows [8]: 

 Collects information about servers and implements file 
scaling strategy by maintaining an SDDSServers table 
containing the list of servers that store file records with 
their parameters. 

 Maintains real LH* file parameters: The coordinator 
manages another table "Parameters". Grouping information 
(i, n, and N) is used to calculate record addresses during 
overflows to distribute them to the corresponding server. 

 Controlls file splits and finds a new data server: Sends a 
split message to the server pointed with an n pointer. 
Receives split committing messages and updates file 
parameters. 

B. Inserting a Query into the Fact Table 

To insert or add one or more records, the client (which has 
its own image) extracts the parameters of the active server. 
Communication takes place directly between the client and the 
server without going through the coordinator. If there is no 
addressing error, i.e., the communicated server is actually the 
active server, there can be two cases: (i) the available storage 
space of the active server is greater than the number of records, 
and (ii) the available storage space of the active server is less 
than the number of records. 

Note that an addressing error occurs if the information 
about the active server is not updated, so the actual values of 
the active server in the client's image do not match with the real 
values of the active server and, therefore, a query is sent to the 
wrong server. This information changes during overflows, 
where the active state passes from one server to another.  

i. The available storage space of the active server is greater 
than the number of records: The client sends an insert 
query to add new records directly to the active server. The 
latter inserts them at his level and sends an insert 
confirmation message to the client.  

ii. The available storage space of the active server is less 
than the number of records: Upon receiving the query, the 
server checks whether there is enough storage space to 
add all the new records. If the number of records is 
greater than the available storage space, an overflow 
occurs, and the active server contacts the coordinator by 
sending it an informative message. The coordinator 
extracts the address of the next server (server to be split) 
from its SDDS Servers table and sends it a split request 
message. The server in the overflow is not the server to be 
split, but the server with point �. Figure 2 illustrates the 
overflow scheme and server split. 

 

 
Fig. 2.  Scheme of overflow and split of a server. 

Each record has a key that is used to calculate its address. 
In the event of an overflow, the hash function ℎ�  is used to 
calculate the addresses of all records (new and already stored 
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on the next server), and about half of the records are transferred 
to a new server. 

ℎ�(�)  =  � �� � ∗ 2�  

where � is the record key, � is the file level (� = 0, 1, 2, 3, … ), 
and � represents the number of buckets, initialized to 1. 

The hashing function ℎ��� , defined by ℎ���(�)  =
� �� � ∗ 2��� , is applied to the records transferred to the 
new server as seen in Algorithm 1. After all records have been 
added to either the next server or the new server, a 
confirmation message is sent to the client. The coordinator 
updates the parameters: active and next server, �, � (� is the 
split pointer, indicating the next bucket to split and takes values 
0, 1, 2, 3, …) and �. The new server will be the active server. 
The address of the next server is calculated by applying 
Algorithm 2. 

Algorithm 1: Computation of the address of 

the new data set 

1:  � = ℎ�(�)  // a is a bucket number 

2:  If (� < �) 

3:    � = ℎ���(�) 
4:  Endif 

 
The function ℎ� is applied to calculate the record's address 

�. If � is less than n, it means that the record of key � belongs 
to a bucket that has already been split, and therefore, the 
function ℎ��� is applied to recalculate the record's address.  

After each split, the counter �  is incremented by 1 to 
indicate the address of the next bucket to split. The split of 
buckets in LH* occurs in a cyclical manner. � consecutively 
takes the values : 0 . . . � − 1, 0 . . . 2 ∗ � − 1.  

If  = 2� ∗ �  , then the total number of buckets has been 
exceeded, � is then reset to 0 (to point to the first bucket), and 
file level � is incremented. The new addressing function will be 
ℎ��� instead of ℎ� . 

Algorithm 2: Algorithm of updating the 

file level � and the split pointer � 
1:  Create a new bucket 

    // Recalculate the addresses of all  

       keys of the bucket � 

2:  � =  � + 1 

3:  If (� >=  2� ∗ �) 

4:    � =  0  

5:    � =  � + 1 
6:  Endif 

 

C. Fact Search Query on the Fact Table 

The client sends its search query to all the servers in 
multicast after it has extracted their parameters from its local 
table. Servers send their responses to the client, which 
recomposes them using a union operation. If the search query 
concerns a single record, the client calculates its address with 
the hash function to find its location (the hosting server). In this 
case, the request is sent only to the specified server. If there is 

an addressing error, the contacted server forwards the request 
to the correct server. 

Algorithm 3: Search query algorithm 

// Recalculate the addresses of all keys  

   of the bucket � 
1:  �′ = ℎ�(�) 

2:  If (�′ =  �) 

3:    Accept � 
4:  else 

5:    ��� = ℎ� �(�) 
6:   EndIf 

7:   If (� <  �′′) and (�′′ < �′)  

8:     �′ ←  �′′  

9:     Send � to the bucket �′ 
10:  Endif 

 
When a bucket receives a research request, it calculates the 

address using its parameters (the level #). If the address is the 
same, the bucket accepts the record, else it applies ℎ� �  to 
calculate the address. 

IV. RESULTS AND DISCUSSION 

This section presents the evaluation of the proposed 
approach using two well-known performance measures: the 
number of point-to-point messages exchanged by the sites of 
the network to perform the operation and the access time to the 
data. The advantage of SDDS_DW is that communication is 
performed directly between the client and the server without 
passing through an intermediate site, reducing the number of 
exchanged messages and the required time to execute a query. 

A. Description of the Tested Data Model 

The logical data model is represented according to the 
following star scheme. 

 

 
Fig. 3.  A data model in star scheme. 

The central fact table Sale relies on the dimension tables 
SalePoint, Car, and Date with foreign keys. All queries are 
directed to the fact table Sale, which undergoes new inserts or 
searches. 

B. Comparison of the Number of Exchanged Messages 

The number of exchanged messages is the first metric to 
demonstrate the performance of a system. Tables I and II show 
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the number of exchanged messages between the client, servers, 
and the coordinator in the classic DW and the proposed 
approach.  

TABLE I.  NUMBER OF EXCHANGED MESSAGES IN A 
CLASSIC DW 

 
Client - 

Coordinator 

Server - 

Coordinator 
Total 

Search query 2 2*nb 2+2*nb 
Insert query without overflow 2 2 4 

Insert query with overflow 2 2 or 4 4 or 6 

TABLE II.  NUMBER OF EXCHANGED MESSAGES IN 
SDDS_DW 

 
Server -

Server 

Client -

Server 

Server - 

Coordinator 
Total 

Search query -- 2*nb -- 2*nb 
Insert query without overflow -- 2 -- 2 

Insert query with overflow 2 3 3 8 
��: Number of servers in the system that hold data.  

 
The above tables show that the coordinator in a classic DW 

is overloaded because any communication or message 
exchanged between the client and a server necessarily passes 
through the server. If a significant amount of exchange traffic 
occurs, the coordinator becomes a bottleneck. Additionally, any 
failure of the coordinator will block communication between 
the client and servers. However, the number of exchanged 
messages between the client and servers in a classic DW is two 
times higher than that required in SDDS_DW for search or 
insert queries without overflow. In SDDS_DW, 2*nb and 2 
messages are needed for a search or insert query without 
overflow, compared to 2 + 2*nb + 4 messages in a classic DW. 

The issue in SDDS_DW arises with insert queries with 
overflow when records must be transferred between servers. In 
this case, messages are exchanged not only between the servers 
and the coordinator but also between servers, increasing the 
number of exchanged messages. 

C. Comparison of the Access Time to Data 

The second metric for demonstrating system performance is 
the time it takes to access data from sending a query to 
receiving the results. The curves below indicate the time taken 
to execute a search or insert queries with and without overflow. 

 

 
Fig. 4.  Search in a DW. 

 
Fig. 5.  Insertion in a DW without overflow. 

 
Fig. 6.  Insertion in a DW with overflow. 

As shown by the search query execution time curves, the 
time required for SDDS_DW is significantly shorter than that 
of a classic DW, with the time in SDDS_DW being reduced by 
more than half compared to a classic DW. This improvement is 
because, in SDDS_DW, communication occurs directly 
between the client and servers without the intervention of the 
coordinator. For an insert query without overflow, the 
execution time in SDDS_DW matches that of a classic DW. 
Furthermore, SDDS_DW enables direct client-server 
communication, thereby eliminating the need for a coordinator.  

However, a primary drawback of SDDS_DW is the 
substantial execution time required for an insert query when a 
server becomes overloaded. In such cases, additional message 
exchanges occur between the client and the server, the server 
and the coordinator, and between the servers, significantly 
increasing the query execution time. This delay is further 
exacerbated by the need to recalculate the record addresses and 
redistribute them to a new server.  

V. CONCLUSION 

This study implemented a classic DW and a new approach 
using the SDDS_DW model with the LH* algorithm. A key 
advantage of SDDS is the absence of a centralized addressing 
component, allowing direct client-server communication that 
enhances performance by reducing message exchanges across 
multiple sites. The results show that for search or insert queries 
without overflow, SDDS_DW outperforms the classic DW in 
terms of fewer messages exchanged and faster query execution 
times. However, SDDS_DW faces a limitation when handling 
insert queries with overflow, as it requires more message 
exchanges and longer execution times due to the recalculation 
and redistribution of record addresses. 

To address the overflow issue, a storage threshold setting is 
proposed for each server, triggering the redistribution of 
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records before new insert queries are processed, thereby 
enabling periodic DW updates independent of client-initiated 
inserts. Future work will focus on resolving addressing errors 
and query redirection. In addition, alternative distribution 
methods, such as interval-based distribution or digital hashing, 
will be explored to implement the ROLAP cube and compare 
them to identify the most effective approach and optimal 
algorithm. 
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