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ABSTRACT 

Since the model order reduction problem was first posed, numerous order reduction algorithms have 

been proposed in a variety of approaches. However, the majority of these algorithms have been 

developed to reduce the order of stable systems. In certain practical applications, such as high-order 

controller design, the original system may be unstable. Consequently, there is a need for order 

reduction algorithms capable of reducing the order of both stable and unstable systems. The present 

paper focuses on introducing a Continuous-Discrete (CD) transformation-based Balanced Truncation 

(BT) algorithm, which has the capacity to reduce the order of both stable and unstable systems. The 

efficiency of the improved BT algorithm is demonstrated by the simulation results. 

Keywords-model order reduction; high-order controller; balanced truncation algorithm; stable system; 

unstable system 

I. INTRODUCTION  

In the mathematical description of dynamic systems, there 
is a preference for models that are detailed and accurate. 
However, the pursuit of such fidelity often results in intricate 
and sophisticated mathematical models of high complexity and 
order. This, in turn, poses significant challenges in the domains 
of simulation and control design. Consequently, there is a 
demand for methodologies that facilitate the simplification of 
complex, high-order mathematical models, thereby yielding a 
simple, low-order algorithm that ensures an almost accurate 
description of the dynamic system. This necessity has given 
rise to a plethora of algorithms, which have collectively formed 
the field of MOR. Among the MOR algorithms, the BT 
algorithm [1] has gained particular popularity. This algorithm 

is founded on the simultaneous diagonalization of both the 
control gramian and the observation gramian of the original 
system. The matrix that facilitates the diagonalization of both 
the control and observation gramians of the original system 
results in the conversion of the original system, represented in 
any basis system, to an equivalent balanced basis system, 
which is referred to as the internal balance space system. The 
elimination of states that contribute little to the input-output 
relationship of the original system, or states that are less 
controllable and observable, results in the attainment of a 
reduced-order system with fewer states or lower order. The 
order reduction error of Moore's BT algorithm [1] is minimal, 
constituting the primary advantage of this algorithm. Authors 
in [2, 3] normalized the BT algorithm and the relationship with 
the Hankel norm was determined. Authors in [4] conducted a 
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thorough analysis of the BT algorithm, demonstrating its 
efficacy through illustrative examples. Authors in [5] 
introduced and analyzed the BT algorithm and the appropriate 
time algorithm and illustrative examples were provided. 
Through this analysis, it was determined that the BT algorithm 
provides good global order reduction error, while the 
appropriate time algorithm provides good system behavior 
error results. In addition, authors in [6, 7] proposed and 
demonstrated the correctness of using the BT algorithm for the 
semi-discrete Stroke equation, while authors in [8] developed a 
formula to determine the order reduction error of the BT 
algorithm and concurrently established the concept of 
frequency-weighted BT order reduction. Authors in [9] 
proposed an extended BT algorithm by constructing the 
concept of extended gramians. These gramians are determined 
by solving a set of linear matrix inequalities. This approach is 
particularly advantageous in the context of frequency-weighted 
reduction. Authors in [10-12] made adjustments to the BT 
algorithms to meet the order reduction requirements of each 
specific problem. However, it should be noted that the BT 
algorithms proposed in [1-12] are only capable of working with 
stable linear systems. However, numerous mathematical 
models of dynamic systems or controllers [13-16] are in fact 
unstable linear systems. Consequently, MOR algorithms must 
possess the capacity to function with both stable and unstable 
linear systems. 

The application of the BT algorithm to unstable linear 
systems is a subject that has been extensively researched [15-
26]. Authors in [24] performed the transformation of an 
unstable continuous system into a stable continuous system by 
shifting the coordinate origin. This renders the system eligible 
for the application of the BT algorithm. The subsequent 
application of the BT algorithm to reduce the order of the 
stable system results in the attainment of a stable reduced order 
system. Finally, the reverse projection is performed to convert 
the reduced order system from a stable form to an unstable 
form. A parallel can be drawn between authors in [25] and in 
[24], as both involved a transformation of a continuous system 
into a stable one, followed by a reduction in order to make it 
eligible for the BT algorithm implementation. Nevertheless, the 
approach presented in [25] involves transforming an unstable 
discrete system into a stable discrete system, hence ensuring its 
eligibility for the BT algorithm application. Building upon the 
findings [24, 25] and the CD transformation, this study 
proposes a BT algorithm based on the CD transformation, with 
illustrative examples demonstrating the algorithm's efficacy. A 
distinguishing feature of the BT algorithm is its capacity for a 
flexible application of the CD transformation, enabling its 
usage with unstable continuous linear systems, a capability not 
possessed by Moore's BT algorithm [1]. Additionally, a 
comparative analysis will be conducted to assess the efficacy of 
the proposed algorithm in reducing the order of unstable linear 
systems. 

II. CONTINUOUS - DISCRETE CONVERSION 

A. -Stable Discrete Time System 

Consider a discrete linear system: 

��� + �� =  

�	���� + 
	����, ��� = �	� + �	���� (1)  

where ���, 
�, ��, ��� ∈ ���� × ��xm × �kx� × �kxm , 

���� ∈ ��, ���� ∈ �� , ���� ∈ �� , x(k), x(k+1) represent the 
state sequence or state trajectory, u(k) is the input sequence, 
y(k) the output sequence, Ad is the system matrix, and Bd, Cd 
and Dd are, respectively, the input matrix, the output matrix, 
and the transmission matrix. The transfer function of the 
system (1) is:  

�� �: = "�� # − %��&'(� + )�,  ∈ "  

 Definition 1: Discrete-time system (1) is called -stable if 
the real part of the poles |+��	�| < -, - ≥ �, where �/ is 

the set of - stable discrete-time systems. 

With the above definition, the discrete system is 
asymptotically stable when the condition 0 = � is satisfied, at 
this point we can call the stable discrete system – 0. The matrix �	 of the asymptotically stable discrete system will have the 
form of a Schur matrix |+��	�| < 1. 

B. -Stable Continuous System 

Let us consider the continuous linear system: 

�2�3� = �4��3� + 
4��3�, ��3�  

         = �4��3� + �4��3�   (2) 

where ��4, 
4, �4 , �4� ∈ ���� × ��xm × �kx� × �kxm , ��3� ∈
��, ��3� ∈ �� , ��3� ∈ ��, x(t) is the state vector, u(t) the input 
excitation vector, y(t) the output measurement vector, Ac is the 
system matrix, Bc, Cc, and Dc are, respectively, the input 
matrix, the output matrix, and the transmission matrix. The 
transfer function of the system (2) is: 

6�7�: = �4�78 − �4�&'
4 + �4 , s ∈ " 

 Definition 2. The continuous system (2) is called : -stable if 
the real part of the poles real �:�?�� < :, : ≥ 0. "A is the 
set of : - stable continuous systems. 

With the above definition, the continuous system (2) is 
called asymptotically stable continuous system when it satisfies 
the control : = 0and the matrix � of the system will be the 
Huzwitz matrix with real �:�?�� < 0. 

C. Continuous-Discrete Conversion 

 Definition 3. The following conversion: ΩA,C: "A →
)C  �?4, E4 , F4 , G4� → �?� , E� , F�, G��  where ?� =
-�H − ?I 4�&'�H + ?I 4�,  E� = √2-�H − ?I 4�&'E4 , F� =
√2-F4�H − ?I 4�&' ,  G� = G4 + F4�H − ?I 4�&'E4 , ?I 4 =
?4 − :H  is called CD conversion. This conversion 

transforms a -stable continuous system to an -stable 
discrete system. The CD conversion performs two 
transformations at the same time, namely converting the 
system from a continuous system to a discrete system and 
converting the system from an unstable system to a stable 

system. There is also a reverse conversion: LC,A&' : )C →
"A ���, 
�, �� , ��� → ��4 , 
4, �4 , �4� , where �4 = :8 +
�8 + �I ��&'��I � − 8� , 
4 = MN

C �8 + �I ��&'
� , �4 =
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MN
C ���8 + �I ��&' , �4 = �� − '

C ���8 + �I ��&', �I � = �
C  is 

called reverse CD conversion. This conversion transforms 

an -stable discrete system to a -stable continuous system. 
The reverse CD conversion performs two transformations at 
the same time, namely converting the system from a 
discrete system to a continuous system and converting the 
system from a stable system to an unstable system. 

III. BALANCED TRUNCATION ALGORITHM BASED 

ON THE CONTINUOUS-DISCRETE CONVERSION 

A. MOR Problem 

Consider a linear system described by: 

�2�3� = ?��3� + EO�3�, ��3� = ���3� + ���3� (3) 

where �?, E, F, G� ∈ ���� × ��xm × �kx� × �kxm , ��3� ∈
��, ��3� ∈ �� , ��3� ∈ �� , x(t) is the state vector, u(t) the input 
excitation vector, y(t) the output measurement vector, A is the 
system matrix B, C, and D are, respectively, the input matrix, 
the output matrix, and the transmission matrix. The objective of 
the MOR problem is to determine a linear system of order r 
described by: 

�2P�3� = ?P��3� + EPO�3�, �P�3�  

           = FP��3� + GPO�3�   (4) 

where �?P , EP , FP , GP� ∈ �rxr × �rxm × �kxr × �kxm , ��3� ∈
�P , ��3� ∈ ��, ��3� ∈ ��, with r < n, so that (4) can replace 
(3) in control system design, simulation, or analysis problems. 

B. Balanced Truncation Algorithm based on the Continuous-
Discrete Conversion 

As previously mentioned, when (3) is in an unstable linear 
form, this system will not satisfy the condition for solving the 
Lyapunov equation. Consequently, it is impossible to 
determine the control gramian and the observed gramian. This, 
in turn, results in the BT algorithm [1] not being applicable to 
the unstable linear system. To solve the MOR problem by the 
BT algorithm when system (3) is in an unstable continuous 
linear form, the BT algorithm is proposed based on the CD 
conversion [2] as follows: 

 Input: -stable continuous system Q�7�: = F4�7H −
?4�&'E4 + G4 ∈ "A. 

 Step 1: convert the system from a -stable continuous 

system into the stable discrete system – 0 QR�� � ∈ �  by 

conversion S?R�, ER�, FT� , GR �U = ΩA,'�?4, E4 , F4 , G4�. 

 Step 2: Apply the BT algorithm for the system 

S?R�, ER�, FT� , GR �U , yielding a discrete reduced-order 

systemQRP�� �. 

 Step 3: Convert the discrete reduced-order system QRP�� � 

into -stable reduced-order system QRP4�7�  by mapping 

S?RP4, ERP4 , FTP4, GR P4U = ΩA,'&'S?RP�, ERP� , FTP�, GR P�U. 

 Output: reduced-order continuous system QRP4�7� =
FTP4S7H − ?RP4UERP4 + GR P4. 

By applying the CD conversion to stable continuous 
systems or unstable continuous systems in step 1, the BT 
algorithm in step 2 will only work with stable discrete systems. 
The reduced order system obtained after step 2 will be a stable 
discrete system. Applying the inverse CD conversion in step 3 
will help conver the reduced order system back to the same 
form as the original system. Thus, by flexibly applying the CD 
conversion and inverse CD conversion, the BT algorithm can 
reduce the order for both the stable continuous systems and 
unstable continuous systems and preserve the properties (stable 
or unstable) of the original system in the reduced order system. 

IV. APPLICATION OF THE BALANCED 

TRUNCATION ALGORITHM BASED ON THE 

CONTINUOUS-DISCRETE CONVERSION 

In order to provide a clear demonstration of the 
effectiveness of the algorithm in reducing the order of unstable 
linear systems, the present study will apply this algorithm to an 
unstable linear system as described in [15]. The 5th-order 
unstable model [15] is expressed as: 

V�7� = 'WX .ZN&N.'NW[.'W\]Z^W.''[N_
Z`^W.aZb^W._cZX^W.'[NZd&W.WecZ  

The objective of this study is to reduce the order of an 
unstable system of order 5 by identifying a reduced order 
system that can substitute for the original system while 
maintaining the properties of the original system as closely as 
possible. The order reduction of the unstable system T(s) is 
achieved through the implementation of the BT algorithm, 
which is based on the CD transformation. This process is: 

Step 1: The poles of the system T(s) are 0, 0.8i, -0.8i, -0.5, 

and 0.2, and we choose  = 1.4. The system T(s) when 
converted to a stable discrete form has the form: 

V� � = _f.gf h`^'[_.[ hb^Nae.f hX^'NN._ hd^Nc._h^'.eac
h`^'.Wef hb^W._Wc hX^W.'NaN hd^W.W'cNch ^W.WWW_fgf  

The poles of the T(z) system: -0.1667, -0.25+ 0.25i,  -0.25 - 
0.25i, -0.0909 -0.3103. 

Step 2: Result of the order reduction T(z) according to the 
BT algorithm, as shown in Table I. 

TABLE I.  RESULT OF THE ORDER REDUCTION OF THE 
SYSTEM T(Z) 

Order Reduced-order system 

4 
58.78 c + 186.1 a + 205.7 N + 88.17 + 9.797

 c + 0.9012 a + 0.3538 N + 0.06425 + 0.003524 

3 
58.78  a + 175.9 N + 175.3 + 58.19

 a + 0.727 N + 0.2313 + 0.02425  

2 
58.78 N + 141.8 + 90.01

 N + 0.1476 + 0.0933  

 
Step 3: Convert the reduced order discrete system to an 

unstable reduced order linear system, the result is as displayed 
in Table II. MATLAB software is used to represent and 
compare the step response and bandwidth response of the 
reduced-order systems and original systems. In Figures 1 and 2, 
a comparative analysis of the step responses for the original 
system and the reduced-order systems is presented. 
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TABLE II.  RESULT OF THE ORDER REDUCTION OF THE 
UNSTABLE SYSTEM T(S) 

Order Reduced-order system 

4 
−6.016.10&g7c + 1.546.10&_7a − 0.00017747N + 10007 + 0.014

7c + 0.37a + 0.53997N + 0.1927 − 0.06409
3 

 0.039637a − 0.78957N + 6.8037 + 967.2
 7a + 0.20437N + 0.67797 + 0.03619  

2 
0.039637a − 0.78957N + 6.8037 + 967.2

7a + 0.20437N + 0.67797 + 0.03619  

 

 
Fig. 1.  Step response of the original system and the reduced-order 

systems. 

 
Fig. 2.  Step response of the original system and the 2nd- order reduced 

system. 

As presented in Figure 1, the step response of the fourth-
order and 3rd-order reduced systems is in complete alignment 
with the step response of the original system. Figure 2 reveals a 
slight discrepancy between the step response of the 2nd-order 
reduced system and that of the original system. Figure 3 
presents the phase response of both the original and reduced-
order systems. 

 

 

Fig. 3.  Bode response of original and reduced order systems. 

In the frequency region w > 0.0209 rad/s, the Frequency 
Amplitude Response (FAR) of the 4th-order reduced system is 
in complete alignment with the FAR of the original system. 
Conversely, in the frequency region w < 0.0209 rad/s, the FAR 
of the 4th-order reduced system exhibits a complete deviation 
from the FAR of the original system. In the frequency range of 
0.869 rad/s < w < 22.2 rad/s, the FAR of the 3rd-order reduced 
system exhibits a complete coincidence with that of the original 
system. Conversely, in the frequency range of w < 0.869 rad/s 
and w > 22.2 rad/s, the FAR of the 3rd-order reduced system 
demonstrates a complete deviation from that of the original 
system. A complete divergence is observed between the FAR 
of the 2nd-order reduced system and the FAR of the original 
system. Furthermore, the Frequency Phase Response (FPR) of 
the reduced order systems is distinct from the FPR of the 
original system. The 2nd-order reduced system has the capacity 
to substitute for the original system, provided that the 
discrepancy in the frequency amplitude response between the 
original system and the reduced-order system is negligible. The 
3rd-order reduced system can substitute for the original system 
if the discrepancy in the frequency amplitude response between 
the original system and the reduced-order system is minimal, 
and if the difference in the frequency phase response between 
the original system and the reduced system is disregarded. 
Authors in [15] achieved an order reduction of the original 
system T(s) through the implementation of the BT algorithm 
based on projection, analogous to the one proposed in [24] BT. 
The resultant system is a 3rd-order reduced system: 

 &NN.''NZd^'aN.ecZ^e__.e
 ZX&W.'[_[eZd^W.gf'cgZ&W.Wg[g'f  

The step response of the 2nd-order reduction system and 
the 3rd-order reduced system are presented in [15]. The step 
response of the 2nd-order reduced system according to the BT 
algorithm based on the CD conversion exhibits a strong 
resemblance to the step response of the original system. In 
contrast, the step response of the 3rd-order reduced system, 
deviates significantly from the step response of the original 
system. In comparison with the results reported in [15], the 
order reduction system in this study exhibits a reduced order 
reduction error and a lower order. The combination of the CD 
conversion with the BT algorithm has been demonstrated to 
expand the application of the algorithm and improve the order 
reduction results. Authors in [27] proposed a method 
combining the Krylov subspace algorithm with the genetic 
algorithm. The decomposition of the order reduction process 
into two steps, with step 1 using the Krylov subspace algorithm 
and step 2 employing the genetic algorithm, facilitates the 
determination of the optimal nominal order reduction model. 
The approach outlined in [27] is notable for its computational 
efficiency and analytical simplicity. 

V. CONCLUSIONS 

The paper presents a thorough exposition of the Balanced 
Truncation (BT) algorithm, founded upon the principle of 
Continuous-Discrete (CD) conversion. The BT algorithm, 
when implemented with the CD conversion, facilitates the 
order reduction for unstable systems. The efficacy of the BT 
algorithm based on the CD conversion is demonstrated by its 
application to the problem of simplifying a 5th-order unstable 
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system, which results in the replacement of the original system 
with a 2nd-order reduced system. The efficacy of the BT 
algorithm based on the CD conversion is substantiated by the 
simulation results. However, it was also observed that when 
this algorithm is applied to the problem of simplifying a 5th-
order unstable system, the order reduction results obtained are 
superior to those attained with the BT algorithm [15]. In 
subsequent studies, the influence of the transformation 
coefficient value of the algorithm on the model order reduction 
results will be evaluated, and methods to combine the BT 
algorithm with optimization algorithms, such as genetic 
algorithms, will be investigated. It is important to note that this 
algorithm's efficacy is constrained to the reduction of order for 
linear systems; its inability to reduce the order for nonlinear 
systems is a significant limitation. This limitation will be 
addressed in subsequent studies. 
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