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ABSTRACT 

This work presents a new model for the shakedown analysis of Kirchhoff plates under uncertain conditions 

of the plastic moment by the direct method. The stochastic models of the plastic moment are normal or 

lognormal distribution. New formulations are derived to compute the lower bound and upper shakedown 

loads and a dual algorithm is established to calculate the upper and lower bound shakedown load factors 

simultaneously for a chosen structural reliability level. An example is examined to illustrate the algorithm 

and shows robust results of the stochastic analysis. 
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I. INTRODUCTION  

Thin structures in the form of plates and shells are 
encountered in many technical fields such as civil engineering, 
mechanical engineering, and aeronautical, marine, and 
chemical industries. In this paper, we consider the bending of 
plates subjected to lateral loads. Limit analysis of plates in 
bending for design against plastic collapse has been started 
around 50 year ago. Authors in [1, 2] are considered to be the 
first to publish works on limit analysis of plate bending. Fox 
[1] used the slip line method to obtain the exact solution for 
clamped plate loaded by uniform pressure. Hodge and 
Belytschko [2] formulated the problem of limit analysis of 
plates as an optimization problem using the finite element 
method. Shakedown analysis of plates and shells for design 
against progressive and alternating plasticity has been 
developed in [3]. In recent years, several publications have 
presented algorithms to solve large problems with millions of 
variables and overcome the size limitation of general nonlinear 
programming [4-7]. Shakedown analysis is an extension of 
limit analysis in which applied loads vary with time in a load 
domain. A dual algorithm was proposed in [4] to solve the 
deterministic problem of lower bound and upper bound 
shakedown loads simultaneously for plate bending. Limit and 

shakedown reliability analysis of thin shells with uncertain 
strength and loading has been presented for the calculation of 
failure probabilities in [8, 9].  

As a more direct stochastic programming approach 
developed for continuum finite elements in [10], we 
reformulate a similar algorithm as the deterministic equivalent 
of a chance constrained program in which the lower bound and 
upper bound limit and shakedown load of a plate under 
uncertain strength is computed. If the thickness is deterministic 
and the yield stress is normally or lognormally distributed, a 
deterministic equivalent formulation can be derived which 
allows a most effective numerical calculation of load limits for 
a prescribed reliability or failure probability of the structure. 

II. THE STATIC APPROACH TO PROBABILISTIC 
CONSTRAINED PROGRAMMING 

In the static approach we look for the maximum of a safe 
load in an admissible moments field. The admissible moments 
field satisfies the static conditions of equilibrium and plastic 
admissibility. Melan’s static theorem states that a structure will 
shakedown, if there exists a time-variant elastic moment field 

( , )E tm x  and a time-independent residual moment field ( )m x  
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such that the yield condition is satisfied for any loading path at 
any time t  and in any point x  of the plate [11, 12]. 

 

 

Fig. 1.  Convex load domain L  for two forces. 

The maximum increase of the load domain L  for a plate 
made of elastic, perfectly plastic material up to  

L , which 
still allows shakedown, characterized by the load factor    can 
be obtained by solving the following optimization problem, in 
FEM formulation: 
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where 
iB  is the deformation matrix, 

iw  is integration weight 
at Gauss point i  and NG  denotes the total number of Gauss 
points of the structure. The first constraint in (1) is the 
equilibrium equation of residual moments. The second 
constrained is the yield condition. Due to the convexity of the 
load domain L  in Figure 1, the inequality has to be checked 
only at the n  load vertices so that the problem becomes time-
independent. Shakedown occurs for any load history in  

L . 
Limit analysis is the special case of monotonic loading for 
which the inequality of the yield condition has to be checked 
only for one load point, 1n  . The limit load is independent of 
the elastic data and residual stress, which disappears at plastic 
collapse. 

Now we consider the situation that the plastic moment of 
the plate is not given but must be modelled by a random 
variable 0 0 ( )m m   on a certain probability space. Under 
uncertainty of the plastic moment, the inequalities in (1) are not 
always satisfied, the thi  yield condition is required to be 
satisfied with a probability greater than some reliability level 

i . In most applications, the same reliability   is chosen for 

all 1,i NG  to achieve a desired failure probability 

1fP    of the structure. Problem (1) must be reformulated 

with probabilistic constraints: 
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After some transformations, the probabilistic constrained 
problem (2) can be converted into the equivalent deterministic 
problem (3) or (4). If the plastic moment of the plate 0 ( )im   is 
distributed normally with mean 

i  and standard deviation 
i , 

the stochastic problem (2) can be convert into the equivalent 
deterministic problem: 
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  (3) 

If the plastic moment of the plate 0 ( )im   is distributed 
lognormally with parameters 

i  and 
i , the equivalent 

deterministic problem is: 
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III. KINEMATIC APPROACH TO PROBABILISTIC 
CONTRAINED PROGRAMMING 

The kinematic approach is based on Koiter’s kinematic 
theorem [12, 13]. The shakedown load factor can be found by 
searching for the minimum of the plastic dissipation of a plate 
in a kinematic velocity field of curvatures κɺ [24]. The upper 
bound of the shakedown problem can be expressed as the 
following convex nonlinear programming problem, in FEM 
formulation: 
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where: 

4 3 2 3 0

2 3 4 3 0

0 0 1 3

 
   
  

Q .    (6) 
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and the displacement field within a DKQ element of the plate 
can be expressed in terms of its nodal values 

 T
/ /w w x w y    u .  

If the yield stress of the material is random, then the plastic 
moment is an uncertain quantity and the objective function of 
(5) is a stochastic variable. The problem (5) must now be 
reformulated as a stochastic program [15]: 
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 (7) 

Depending on whether the distribution of the random 
variable is normal or lognormal, (7) can be converted into 
equivalent deterministic problems (8) and (9), respectively. 

 The equivalent deterministic program for normal 
distribution of strength: 
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 The equivalent deterministic program for lognormal 
distribution of strength: 
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The objective functions of nonlinear constrained 
optimization problems (8), (9) are not everywhere 
differentiable. This issue is overcome by a "smooth 
regularization method", in which a small positive number 2  is 
added to the objective functions [16]. 

IV. THE ALGORITHM FOR SOLUTIONS 

For convenience, some new variables are defined: 
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Note that: 
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Inserting the new variables in (10) into (8) and (9) gives a 
shorter version of the primal problem: 
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In (12), 
i iR    , i iR e   for the cases of normal 

strength and lognormal strength, respectively. 

By the duality theory, we can prove that the maximum 
problem: 
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is the dual of the minimum problem (12). Problem (13) can be 
written with the von Mises yield function as follows after some 
transformations [10]: 
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The problem (14) is exactly in the form of the lower bound 
shakedown limit, which is formulated in (4). The problem (13) 
is identical to problem (14). This shows that problem (14) is a 
dual problem of (12).The duality of the convex optimization 
problems lets the lower and upper bound converge to the same 
load factor. 

As in (8) and (9), the objective function of (12) is not 
everywhere differentiable. Therefore, a small positive number 

2  is added to the objective function. The first and second 
constraint of (12) are eliminated with a penalty method, and 
then the Lagrange multipliers method is employed to convert 
(12) into an unconstrained programming problem. The 
Lagrange-penalty function of the problem is:  
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where c  is a penalty parameter ( 101, 10c  ≫ ).  
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The corresponding Lagrange function of (12) is: 
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The optimally conditions for problem (12) now become 
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The following algorithm performs an approximation to 
solve the system of the nonlinear equations in (18) by using 
Newton’s method and making use of (13). 

Step 1. Creating a starting point of the velocity and the 
curvature rate vectors 0 0,u xɺ ɺ  such that the normalized 
condition (18d) is satisfied: 
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i β 0 . 

Step 2.  Compute the increment of the nodal value vector 
duɺ , the curvature rate dxɺ , and ( d )   by solving the 
system of the equations: 
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in which: 
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Step 3. Perform a line-search to find the step size 
k  such 

as: 
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Step 4. Compute the increment of the vector: 
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Update the vector 
iβ  and load factor  : 

i i s id β β β ,  

a d     . 

Step 5. Check the convergence criteria:  

- ( ) ( 1)iter iter     precision 

- ( ) ( 1)iter iter     precision 

If they are satisfied then stop, otherwise repeat steps 2-4. 

V. NUMERICAL EXAMPLES 

In this example, we calculate the limit load for a rectangular 
as shown in Figure 2. The data are the short length 5mb  , 

2a b , the plate thickness 0.1mt  , the mean value of the 
yield stress 0( ) 250 MPaE    and the standard deviation 

00.1 ( )E  . With 2
0 / 4pm t  the mean value of the 

plastic moment (per length) is ( ) 0.625pE m N    and its 

standard deviation is 0.1 ( )pE m  . The reliability level 

0.999   is chosen. Let us consider this plate for two cases: 
the simply supported plate and the clamped plate. The plate is 
modelled by 1024 DKQ elements. The limit loads for both 
cases are compared with those found in other studies some in 
Tables I and II. The analytical lower bound for the simply 
supported plate ( 2a b ) derived by Johansen [17]: 
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and the upper bound by Ingerslev [18] for b a : 
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are used in Table I. 

 

 
Fig. 2.  Rectangular plate subjected to uniform load. 

TABLE I.  LIMIT LOAD FACTOR COMPARISON FOR 
SIMPLY SUPPORT PLATE (×

��

��
) 

Reference 
Lower 

bound 

Upper 

bound 

Stochastic strength 

model 

[17] 28  Analytic, deterministic 
[18]  28.28 Analytic, deterministic 
[6] – 29.88 Deterministic 
[19] – 29.88 Deterministic 

Present 30.535 30.615 Deterministic 
Present 21.11 21.15 Normal 
Present 22.22 22.38 Lognormal 

TABLE II.  LIMIT LOAD FACTOR COMPARISON FOR 
CLAMPED SUPPORT PLATE (×

��

��
) 

Reference 
Lower 

bound 

Upper 

bound 

Stochastic strength 

model 

[6] – 54.61 Deterministic 
Present 55.91 55.91 Deterministic 
Present 38.58 38.58 Normal 
Present 40.86 40.86 Lognormal 

 
Equations (19)-(20) were used to diagram the limit loads 

over the failure probability in Figure 4. If the deterministic 
upper bound (20) is used, we get: 
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and the lognormal limit load factor is: 
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Fig. 3.  Convergence of the limit load factors (×

��

��
). 

 
Fig. 4.  Limit load factor over failure probability for simply plate (×

��

��
). 

Figure 4 shows that the limit load factor must be reduced 
strongly even to achieve a low reliability of the structure. In 
structural reliability the failure probability fP  is computed for 

the limit load factor   of a given structure. fP  is very 

sensitive to variations of the stochastic model. If the stochastic 
model is changed between a normal and a lognormal 
distribution, a small fP  changes for more than an order of 

magnitude on the logarithmic scale at fixed   as seen in 
Figure 4. 
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The presented chance constraint analysis computes   for a 
chosen fP . Figure 4 shows that   changes only a little 

between the stochastic models. Therefore, the proposed new 
stochastic approach is much more robust than the established 
structural reliability analysis. 

VI. CONCLUSION 

This paper presents the so-called probabilistic constrained 
programming method to perform limit and shakedown analyses 
of plates under random material strength. This stochastic 
programming method reformulates the optimization problem as 
a deterministic equivalent of the stochastic limit or shakedown 
analysis problem. Uncertainties can be quantified and a target 
failure probability is chosen according to the failure 
consequences. Then a design load of plates can be calculated 
on the basis of the stochastic model and the data of all 
uncertainties. The method is robust and has the same numerical 
effort as a deterministic limit and shakedown analysis. In the 
presented numerical tests, the method converges in only 4-5 
iterations, which means the effort of 4-5 linear elastic analyses. 
This is highly effective compared to fully plastic reliability 
analyses possibly over a many load cycles or a complex load 
history. 

The results of the survey for rectangular plates in this paper 
were compared with the results of published works and can be 
considered reliable. In the case of deterministic plate strength, 
the proposed dual algorithm gives limit load results similar to 
those suggested by other authors. Moreover, the algorithm can 
also find solutions for the lower and upper bound problems 
simultaneously. In the case of the plastic moment of the plate 
being a random variable with normal or logarithmic 
distribution, the results obtained in this work are new and have 
not been published in any previous documents. These results 
show that if we consider the random condition of the plastic 
moment (yield stress of material), the limit load factor of the 
plates decreases strongly. 
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