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ABSTRACT 

Hyperspectral image (HSI) classification plays a crucial role in remote sensing, allowing the identification 

of various land cover types. Traditionally, Convolutional Neural Networks (CNNs) have been widely used 

for this purpose. However, they often face challenges related to high training parameter requirements and 

limited capacity for feature extraction, affecting their overall effectiveness. To overcome these challenges, 

this study proposes a novel approach integrating the Enhanced Deep Spectral and Spatial Transformer 

(EDSST) with Grasshopper Optimization (GHO). EDSST leverages transformer architecture to perform 

advanced spectral and spatial feature extraction, effectively mitigating the limitations of CNNs. This 

method improves feature abstraction and classification performance by reducing the number of training 

parameters while implementing a self-focusing mechanism. This approach incorporates a Classification 

Head (CH) with an orthogonal softmax activation function to accurately classify hyperspectral images. The 

proposed method was rigorously evaluated using the Salinas dataset, a benchmark in HSI classification 

research. The results show substantial improvements over existing techniques, achieving an accuracy of 

99.5472%, precision of 99.5574%, recall of 99.5267%, and an F score of 99.6145%. These findings not only 

demonstrate the effectiveness of the proposed method in HSI classification but also highlight its efficiency 

and robustness, offering a promising solution for future applications in remote sensing and environmental 

monitoring. 

Keywords-convolutional neural networks; enhanced deep spectral and spatial transformer; grasshopper 

optimization; classification head; hyperspectral images 

I. INTRODUCTION  

Hyperspectral Imaging (HSI) is a technique for obtaining 
the electromagnetic spectrum from the visible to the infrared 
wavelength ranges through remote sensing [1]. Hundreds of 
narrow spectral bands are available from a specific region on 
the Earth's surface with HSI sensors [2]. HSIs consist of pixels 
corresponding to wavelength-specific spectral reflectances [3]. 
As HSIs are capable of distinguishing subtle spectral 
variations, they have found widespread use in a wide range of 
fields. Due to advances in imaging spectrometry, hyperspectral 
sensors can capture the reflectance intensity of a given scene at 
a higher spatial and spectral resolution than ever before. HSIs 
are obtained by simultaneously capturing both spatial features 
and continuous detection spectra of different objects [4, 5].  

HIS characterization is important for applications ranging 
from environmental monitoring and agriculture to mineralogy 
and conservation, allowing detailed spectral analysis for 

accurate characterization and detection in various domains [6]. 
HSI classification, which assigns each pixel vector to a specific 
class, is one of the main analysis tasks and has received a lot of 
attention from researchers. Several traditional methods, such as 
the Support Vector Machine (SVM) and K-Nearest Neighbor 
(KNN), have been proposed for this task [7]. However, these 
approaches ignore correlations between pixels on spatial axes, 
wasting spatial information. The high dimensionality of HSIs 
with hundreds of spectral bands leads to the curse of 
dimensionality, complicating data processing and analysis [8]. 
Obtaining labeled samples for training is often expensive and 
time-consuming, resulting in insufficient data for supervised 
learning.  

II. LITERATURE SURVEY 

Many studies have proposed HSI detection and 
classification methods. In [9], SpectralFormer was introduced 
to enhance the HSI classification by addressing the limitations 
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of CNNs in representing spectral signatures. SpectralFormer 
uses transformers to capture local spectral sequence info, 
yielding group-wise embeddings applicable to pixels and 
patches. This method achieved state-of-the-art results without 
convolutional or recurrent units. However, classic transformer-
based networks such as ViT struggle with detailed spectral 
discrepancies and layer-to-layer memory transmission, 
impacting performance on hyperspectral data. In [10], an HSI 
classification method was proposed to address the 
computational challenges of traditional CNNs while 
maintaining high performance by introducing a combination of 
the ghost-module architecture with a CNN-based classifier. As 
a result, computational costs were significantly reduced and 
satisfactory results were achieved. As a drawback, deep 
learning-based HSI classification methods require large 
amounts of labeled data and can result in overfitting. 

In [11], PLG-KELM (PCA-LBP-optimized Kernel Extreme 
Learning Machine) was proposed for HSI classification, 
employing PCA for spectral dimensionality reduction and LBP 
for spatial texture extraction, and optimizing KELM with the 
gray wolf optimization algorithm. This method used PCA to 
reduce spectral dimensionality and LBP to extract local texture 
features from HSIs. Despite enhancing the classification model 
by optimizing KELM parameters, a limitation was its lower 
operational efficiency due to computational complexity, 
potentially restricting real-time applications in resource-
constrained environments. In [12], an end-to-end Fully 
Convolutional Segmentation Network (FCSN) was introduced 
for HSI classification, which labeled all pixels within HSI 
cubes simultaneously and showed superior generalization to 
spatial land-cover distributions compared to cropped cube-
based CNN methods. However, a limitation was the difficulty 
of simulating realistic spatial land-cover distributions with the 
proposed HSI cube generation method and the inability of 
FCSN as a supervised method to utilize unlabeled pixels. 

In [13], a hybrid deep learning method was used for HIS 
classification, combining a 3D fast learning block with a 2D 
CNN to extract spectral and spatial features. This method 
addressed challenges including noise, limited labeled samples, 
overfitting, and insufficient feature extraction, enhanced by 
optimization techniques such as batch normalization, dropout, 
and L2 regularization. Experimental results on the Salinas, 
University Pavia, and Indian Pines datasets showed that 
although 3D CNNs with similar layer setups outperformed 
traditional 2D CNNs, the hybrid model's performance was 
contingent on the availability of sufficient training samples, 
potentially limiting its complexity reduction and feature 
extraction optimization benefits for HSI classification in cases 
of inadequate data. In [14], a Rotation-Invariant Attention 
Network (RIAN) was introduced for HSI classification, 
mitigating the sensitivity issues of traditional methods with 3D 
convolutions on rotated HSIs. RIAN integrated a Center 
Spectral Attention (CSpeA) module to focus on central pixel 
spectral properties, reducing interference. Additionally, a 
Rectified Spatial Attention (RSpaA) module extracted rotation-
invariant spectral-spatial features from HSI patches. Despite its 
strengths, RSpaA's limitation was its reliance on pixel 

similarity for spatial aggregation, potentially limiting its ability 
to effectively capture textural information from HSIs. 

III. PROPOSED HSI CLASSIFICATION 

HSIs were obtained from publicly available datasets, 
followed by data normalization, feature extraction using 
EDSST, and classification with optimized hyperparameters 
through Grasshoppers Hyperparameter Optimization (GHO), as 
shown in Figure 1. Data normalization ensured consistency and 
quality. Then, EDSST was used for advanced feature extraction 
and classification, combining spectral and spatial feature 
extraction capabilities with a CH that incorporates an 
orthogonal softmax activation function. This hybrid approach 
leverages the transformer architecture to extract and analyze 
spectral and spatial features more effectively than traditional 
CNNs, which often require more training parameters and may 
struggle with abstract feature extraction. Following feature 
extraction, the CH categorizes the images into classes such as 
vegetables, bare soil, and vineyards. To further improve 
classification accuracy, the EDSST hyperparameters were 
optimized using the GHO algorithm. The performance of the 
proposed method was evaluated using the Salinas dataset and 
analyzed for classification accuracy. The entire workflow was 
implemented and tested using Python to ensure robust 
evaluation and performance measurement. Figure 1 shows the 
flow diagram of the proposed method for HSI classification. 

A. Preprocessing 

Normalization is commonly used in ML and computer 
vision to analyze features in the Salinas dataset. Normalization 
standardizes and manages the data for consistency and is 
important for the hyperspectral characteristics of images for 
multiple reasons. Normalization standardizes pixel values in 
HSIs. Images can differ in lighting, camera quality, and other 
factors, affecting pixel values. Normalized pixel values 
eliminate scale differences, improve data comparability, and 
prevent the dominance of features with larger numerical values 
in the analysis. Machine learning methods, particularly deep 
learning models, may converge slowly or fail if input data 
exhibit large numerical variability. Normalization speeds up 
and stabilizes training, helping the model learn from data. 

In HSIs, specific characteristics of wide spectral ranges 
may have higher pixel intensities than others. When variations 
are not standardized, the framework concentrates too much on 
certain areas, biasing predictions. Normalization reduces 
biases. Normalizing input data within the range [0, 1] improves 
neural network activation functions, ensuring that they are 
within the required range. This study normalized vegetables, 
bare soil, and vineyard image data characteristics using min-
max scaling. Each data point was divided by the range obtained 
by subtracting the lowest value from the greatest: 

������� = 	
	��
	��� 
	��    (1) 

This is advantageous when there is a significant variation in 
pixel intensities across distinct images since it ensures 
consistency in the dataset. 
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Fig. 1.  Flow diagram of the proposed HIS classification method. 

 
Fig. 2.  General structure of EDSST. 

B. Enhanced Deep Spectral and Spatial Transform (EDSST) 

EDSST was used for feature extraction and classification, 
which is a hybrid of DSST with a CH. CH is usually an 
orthogonal softmax activation function. EDSST is used to 
extract spectral and spatial features, and CH is used to classify 
the image. To begin, images were divided into nonoverlapping 
patches using tokenization, which makes the patches resemble 
tokens in Natural Language Processing (NLP). Then, the pure 
transformer encoder was applied to the tokens. Then, 
classification was performed using the classification token that 

matches the representation of the global image. Figure 2 shows 
the overall framework of EDSST. 

An HSI module includes a learnable super-pixel sectional 
submodule. More specifically, the first high-resolution HSI 

information � ∈ ��������  is initially input to create a two-
layer to reduce redundant images and produce low-grade 

discriminating features � ∈ �������� , where ��, ��, �, and � stand for the hidden feature's height, width, band number, 
and measurement, respectively. In the shallow CNN, each 
convolutional block consists of a Rectified Linear Unit (ReLU) 
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activation function, a 1×1 convolutional layer, and a Batch 
Normalized (BN) layer. 

Next, a group block is used, comprising the ReLU 
activation function, the BN layer, and the 1×1 group 
convolutional layer to remove portions of the spectral 
dimension's low-level features. The process of spectral 
partitioning, which splits the input channels and filters into 
groups causing each group to do a separate convolution 
operation and generate the following set of patches, can be 
effectively substituted with the group convolutional block: 

� → ��!� = "�#, �%, . . . . , �'(  (2) 

where ��!�  denotes the collection of patches produced through 

the convolution of the group process, �� ∈ ��������) refers to 
the spectral-spatial characteristics of the � th

 group,  � = 1, 2, … , -, and �� is the feature dimension of each group given 
by �� = �/-. The proposed HSI module can produce spectral-
spatial tokens that are indicative of the HSIs and fully account 
for its image-spectrum merging structure and image 
redundancy property. 

1) Improved Transformer Encoder 

The novel transformer encoder with local enhancement 
consists of two transformer encoders stacked in serial order: a 
local and a global. This is in contrast to the original transformer 
encoder. The term implies that although the former is intended 
to gather local spectral-spatial information among spatially 
adjacent tokens in each group, the latter is utilized to maintain 
the ability to capture global linkages among tokens from the 
spectral dimension. Figure 3 shows a local transformer 
encoder. 

 

 
Fig. 3.  Local transformer encoder. 

 

2) Local Transformer Encoder 

One of the most important components of the original 
transformer encoder is the Multihead Self-Attention (MSA) 
layer, which is highly influential in constructing long-range 
interactions between tokens. However, the original global MSA 
layer fails to take into account the important local information 
in the spatial dimension, degrading execution, particularly 
when constrained. Furthermore, the original global MSA layer 
might introduce interference with the semantic modeling 
procedure by taking into account a few tokens that are not 
relevant. The goal was to overcome these constraints by 
creating a new local transformer encoder on the Spatial Nearest 
Neighbor (SNN) MSA layer. Based on the SNN MSA layer, 
the local transformer encoder is designed to increase the 
similarity between spatial surrounding tokens in each group: 

/!#′� = /!#
#� 0 1-/�223453/!#
#� 66  (3) 

/!#� = /!#′� 0 1473453/!#′� 66  (4) 

where /!#
#� = 8/!#
#�,# , /!#
#�,% , . . . . , /!#
#�,9 :  are the 3;# < 16 

adaptive layer spectral-spatial tokens, ;# � 1, 2, . . . , 7#, 7#is the 
encoder of the local transformer depth, and 1-/�22 represents 
the SNN MSA layer. 

3) Global Transformer Encoder 

The original MSA layer and the SNN MSA layer 
complement each other in modeling and apply a normal global 
transformer encoder after the local transformers to extract 
features from local to global relationships. Tokens from every 
group acquired by the locally improved transformer encoder 

are put together into /=# � 8/=#
# , /=#

% , . . . , /!#
' : and redesigned 

to � ∈ �9�'��) . Afterward, they are received by the global 
transformer encoder. The encoder for the global transformer is 
still capable of capturing the following global relationships 
between tokens from the spectral dimension: 

�!%
′ � �!%
# 0 1-/3453�!%
#

66  (5) 

�!% � �!%
′ 0 1473453�!%

′ 66   (6) 

where �!%
# are the 3;% < 16  layer's token embeddings, 

;% � 1, 2, . . . , 7%,  and 7% is the global transformer encoder's 
depth. 

Despite sharing the same network architecture, the original 
and the global transformer encoder differ slightly in terms of 
building dependencies. The global transformer encoder is used 
to simulate long-range dependencies between tokens in 
different spectral groups, whereas the original transformer 
encoder captures long-range spatial interactions between tokens 
in each group. 

4) Classification Head (CH) 

All the improved tokens are used for classification rather 
than settling on a single extra classification token. For this 

reason, a series of improved spectral-spatial tokens �!%  is 

converted into the row-normalized pixel-super-pixel 
correlations in the image-like feature representations > . This 
can be calculated using basic matrix multiplication: 
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> � �?�=%      (7) 

The output features of each group are concatenated and fed 
into the softmax classifier, which consists of a linear projection 
layer and a softmax activation layer, along with the class 
probabilities of each pixel in the HSI. The GHO algorithm is 
used to optimize the hyperparameters of EDSST to enhance 
classification accuracy by efficiently exploring the parameter 
space and finding optimal configurations to strike a balance 
between exploration and exploitation to improve the model's 
performance and generalization. 

5) Hyperparameter Optimization Using GHO 

Hyperparameter optimization is the procedure of 
determining the best mix of EDSST hyperparameter settings to 
optimize performance on data in a reasonable quantity. This 
process is essential to EDSST's capacity for precise result 
detection. Most of this input uses the hyperparameters' default 
values. GHO [15] was used to optimize hyperparameters. Table 
I shows the hyperparameter initialization range. 

TABLE I.  HYPERPARAMETER INITIALIZATION RANGES 

Hyper-parameters Range 

Number of Layers (NL) 1 to 4 

Number of Attention Heads (NA) 1 to 8 

Hidden Size (HS) 256 

Dropout Rate (DR) 0.1 

Learning Rate (LR) 1e-4 

Batch Size (BS) 32 

Epochs (E) 1 to 50 

 
The GHO algorithm's step-by-step procedure is as follows: 

1. Initialization: Selecting the ideal hyperparameter is the 
primary goal of this approach. Initially, define the top and 
lower bounds of the problem, the dimensionality � of the 
variables, the maximum number of iterations, and the 
Grasshopper size 5 . Each solution represented by the 
Grasshopper consists of hyperparameters, including NL, 
NA, HS, DR, LR, BS, and E. At first, a random selection is 
made. The first solution format is given by: 

7@ � A-#, -%, … , -@B    (8) 

�@ is the 5th
 solution or Grasshopper's position. 

-� � ANL, NA, HS, DR, LR, BS, E}�   (9) 

2. Calculating fitness: Following initialization, each solution's 
fitness is evaluated using the GHO technique. In this case, 
the classification accuracy is defined for fitness purposes. 
The solution with the highest fitness value is deemed to be 
the most effective. The fitness function is given by:  

L�MN�OO = 1PQ R S=TS@
S=TS@TU=TU@V  (10) 

3. The nymph and adult phases make up their life cycle. The 
nymph phase is distinguished by sluggish motions and short 
steps, whereas the adult phase is characterized by long-
range and sharp movements. The nymph and adult motions 
comprise the phases of GOA's intensity and diversity:  

-� = W� 0 7� 0 X�     (11) 

where -� denotes the location of the � th
 grasshopper, W� is 

grasshoppers' social engagement with one another, 7�  
indicates the grasshopper's � th

 gravitational force, and X� is 
the advection of wind. Interpersonal communicationW�  is 
described as follows:  

W� = ∑ Z3Q�[@[\#[]#
6Q̂�[    (12) 

where 5  represents the amount of grasshoppers, Q�[ =
_-[ < -�_ specifies a distance in Euclidean terms between 

the `th
 and �th

 grasshoppers, and ab�[ = 'c
'�
d�c  is a unit vector 

representing the social forces created from the �th
 to the `th

 
grasshopper. 

When there is no force involved and two grasshoppers are 
apart, there is neither attraction nor repulsion. Comfort zone 
is the term for this region. The force of gravity 7�  is 
determined by the subsequent formula: 

7� = <;�̂!     (13) 

where ; stands for gravitational constant and �̂! denotes a 

vector in units pointing towards the center of the earth. The 
advection of wind X� is determined by: 

X� = f�̂g     (14) 

The swarm mechanism does not converge at a target point 
because the grasshoppers quickly reach their comfort zone. 
An improved iteration of this formula is provided as: 

-�d = h i∑ h jk�
�k�
% Zl_-[d < -�d_m 'c
'�

d�c
@[\#[]�

n 0 opd(15) 

where fqd  and rqd  indicate the top and lower boundaries 

within the Qth
 dimension, correspondingly. opd indicates the 

greatest solutions discovered along the Q spatial dimension. 
Note that Z is comparable to Z in (1). 7  is equivalent to 0 

and X is always in the direction of the ideal solution opd. As 
a result, it offers an excellent mix of intensification and 
diversity. The variable h%  is employed to decrease the 
grasshoppers' comfort, attraction, and repulsion zones in 
proportion to the number of repeats. h# and h% are seen as 
a single parameter, given by: 

h = hs�d < t3g���
g��6
t���    (16) 

where hs�d  and hs�2  represent the maximum and 
minimum values of h, respectively, M is the current iteration 
and Ms�d  is the maximum number of iterations. 

4. Termination condition: The process is repeated until 
optimal hyperparameter selection is made. The EDSST 
receives the chosen hyperparameter value. 

IV. RESULTS AND DISCUSSION 

The tests were performed on a PC equipped with an Intel 
Core i5 4570s CPU at 2.90 GHz and 8 GB of RAM using 
Python on Windows 64-bit. The experimental configuration 
included two data centers with four hosts and a total RAM of 8 
GB. The host had a bandwidth of 2800 Mbps. 
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A. Dataset Description 

AVIRIS [16] captured images over the California Salinas 
Valley. This dataset has 16 distinct land cover classes. Over a 
400-2500 nm range, the dataset has a 512×217 pixel size and 
3.7 m spatial resolution. There are 224 spectral reflectance 
bands in this scenery. 

B. Experimental Results 

The experimental results, including accuracy, precision, 
recall, F score, and accuracy vs. loss, show the performance of 
the proposed method compared to FCN, GAN, and LSTM. The 
proposed method achieved superior performance metrics across 
these evaluations, indicating better overall performance. Figure 
4 illustrates the training and testing accuracy and loss over 500 
epochs for various models. The proposed EDSST model 
showed a high accuracy that stabilizes near 1.0, while its loss 
decreases significantly, indicating effective learning. In 
contrast, ResNets and CNNs exhibited lower accuracy and 
higher loss values, suggesting they were less effective in this 
context. Overall, the proposed EDSST outperformed the other 
models in both accuracy and loss reduction. 

 

 
Fig. 4.  Training and testing accuracy and loss. 

 
Fig. 5.  Prediction time comparison compared to existing methods. 

Figure 5 compares the prediction times of the EDSST, 
Gcforest, DBN, and SVM methods. The proposed method 
achieved the shortest forecast time. SVM, on the other hand, 
had the longest prediction time, which makes it less appropriate 
for applications that need speed. Overall, the pattern shows that 
the prediction time tends to grow along with model complexity. 

 

Fig. 6.  Evaluation metrics. 

Figure 6 presents a comparison of the proposed EDSST 
model against ResNets, 3D CNNs, and CNNs across four key 
metrics: accuracy, precision, recall, and F-score. The proposed 
EDSST consistently outperformed the other models in all 
metrics, indicating its superior classification capability. Each 
metric reflects the model's effectiveness in correctly identifying 
positive instances, with the EDSST achieving the highest 
values. 

V. CONCLUSION 

This paper introduced a novel approach to HSI 
classification by combining EDSST with GHO. EDSST 
leverages a transformer architecture for advanced spectral and 
spatial feature extraction, addressing the limitations of CNNs 
by reducing training parameter requirements and enhancing 
feature abstraction through a self-focusing mechanism. The 
integration of a CH with an orthogonal softmax activation 
function further enhances classification accuracy for HSIs 
across diverse categories. The proposed model achieved an 
accuracy of 99.5472%, precision of 99.5574%, recall of 
99.5267%, and an F score of 99.6145% on the Salinas dataset. 
These results highlight the proposed method's significant 
efficiency and accuracy improvements, making it a robust 
solution for HSI classification. 
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