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ABSTRACT 

In Intelligent Transportation Systems (ITS), adaptive traffic control relies heavily on precise, real-time 

traffic data. Controllers use information such as vehicle count, vehicle density, traffic congestion, and 

intersection wait times to optimize traffic flow and improve efficiency. Traffic cameras collect and process 

this data, but environmental factors like rain can degrade the performance of data retrieval systems. We 

propose a vehicle detection method that integrates pixel area analysis with Deep Learning Super Sampling 

(DLSS) to enhance performance under rainy conditions. Our method achieved an accuracy of 80.95% 

under rainy conditions, outperforming traditional methods, and performing comparably to specialized 

methods such as DCGAN (93.57%) and DarkNet53 (87.54%). However, under extreme conditions such as 

thunderstorms, the method's accuracy dropped to 36.58%, highlighting the need for further 

improvements. These results, evaluated using the AAU RainSnow Traffic Surveillance Dataset, 

demonstrate that our method improves traffic data collection in diverse and challenging weather 

conditions while identifying areas for future research. 

Keywords-deep learning super sampling; digital image processing; intelligent transportation system; pixel 

area; traffic counter 

I. INTRODUCTION  

Contemporary urbanization and the resulting increase in 
vehicular traffic have posed significant challenges to city 
planners and traffic management bodies, necessitating the 
evolution of Intelligent Transportation Systems (ITS) to 
improve traffic flow and alleviate congestion through the use of 
cutting-edge technologies [1]. Real-time traffic data collection 

and analysis are essential for ITS to facilitate adaptive traffic 
control mechanisms. These data include metrics such as the 
number of vehicles passing a point, vehicle density, congestion 
levels, and intersection waiting times [2]. Traffic cameras are 
essential for collecting these data. These devices collect real-
time traffic information by capturing and processing footage 
[3] The quality of the captured images has a significant impact 
on the performance of traffic data retrieval systems. Rain, fog, 
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snow, and varying lighting conditions adversely affect traffic 
monitoring and vehicle detection accuracy by introducing noise 
and degrading image quality [4].  

Machine learning and deep learning have led to substantial 
progress in the development of traffic monitoring and vehicle 
detection systems. Traditionally, traffic monitoring relied on 
basic image processing methods such as edge detection, 
background subtraction, and optical flow analysis [5]. These 
methods paved the way for vehicle detection and traffic flow 
analysis, revealing important essential traffic patterns and 
congestion levels. In recent years, more advanced traffic 
monitoring systems have emerged. Convolutional Neural 
Networks (CNNs) have become a cornerstone in this field [6], 
with models such as You Only Look Once (YOLO) [7] and 
Single Shot MultiBox Detector (SSD) [8, 9] achieving high 
accuracy and real-time performance in vehicle detection tasks. 
These models can swiftly and accurately identify and classify 
vehicles from traffic camera video frames, but typically work 
best when image quality is not affected by external factors such 
as weather and lighting changes. The integration of multi-
camera systems and sensor fusion represents a significant 
advancement in traffic monitoring technology [10]. These 
methods involve fusing data from multiple cameras or multiple 
sensors, like LiDAR and radar, to generate a complete 
understanding of traffic conditions. Overlapping fields of view 
from multiple cameras improve the precision of vehicle 
detection and monitoring. Sensor fusion combines the strengths 
of various sensing modalities for improved robustness and 
reliability. Although these methods significantly enhance 
traffic data collection, their intricate installation and increased 
cost hinder their widespread implementation. In addition, 
advancements in image enhancement techniques have 
contributed to improved performance in traffic monitoring 
systems. Techniques such as histogram equalization, contrast 
enhancement, and super-resolution have been applied to 
improve the visibility and detail of traffic images [11]. These 
methods improve the image quality of traffic cameras, allowing 
for more precise vehicle detection. Adverse environmental 
conditions often challenge the effectiveness of image 
enhancement techniques, which typically do not address these 
specific issues. Many existing traffic monitoring methods 
overlook the effects of non-ideal environmental conditions. 
Deep learning models and image processing techniques are 
usually designed under the assumption of clear visibility and 
stable lighting. This assumption reduces the effectiveness of 
these methods when dealing with real-world conditions such as 
rain, fog, snow, and varying lighting. 

Our work fills a critical gap in the current literature: the 
integration of deep learning-based image enhancement 
techniques with specialized traffic analysis methods that can 
handle the challenges posed by non-ideal weather conditions. 
Specifically, the proposed method combines Deep Learning 
Super Sampling (DLSS) with multi-Region of Interest (multi-
ROI) pixel area analysis to enhance vehicle detection in rainy 
conditions. Our approach not only improves the visual quality 
of traffic camera footage but also ensures reliable vehicle 
counting and identification in complex traffic scenarios, even 
under adverse environmental conditions. By explicitly 
addressing this gap, our work contributes a novel solution that 

enhances the robustness and accuracy of traffic monitoring 
systems under real-world conditions, where traditional methods 
often fail. DLSS has emerged as a promising method for image 
enhancement in the context of computer graphics and gaming 
[12]. DLSS uses deep learning to increase the resolution of 
low-resolution images, resulting in enhanced image detail and 
clarity. Its potential for improving traffic camera footage under 
non-ideal conditions is increasingly recognized, especially in 
real-time rendering applications. Studies suggest that DLSS 
significantly improves the accuracy and reliability of vehicle 
detection by reducing the influence of environmental noise 
[13]. The concept of multi-ROI analysis has been utilized in 
diverse image processing tasks such as medical imaging and 
remote sensing [14]. Multi-ROI methods help narrow the focus 
of traffic monitoring analysis by selectively zeroing in on areas 
of interest within images. This technique is most effective in 
intricate scenarios with numerous lanes and irregular traffic 
flows. Despite recent advances, there is limited research on the 
application of DLSS and multi-ROI pixel area analysis to 
traffic monitoring. Previous research has primarily addressed 
the issues of improving image quality or developing advanced 
detection algorithms separately. Our method, which integrates 
DLSS with multi-ROI analysis, aims to address the challenge 
of vehicle detection in non-ideal environmental conditions by 
offering a more robust solution. 

This study introduces a novel method for traffic counting 
under adverse weather conditions, specifically focusing on 
rainy scenarios where traditional vehicle detection methods 
face significant challenges. The key contribution of this 
research lies in the integration of DLSS with advanced image 
processing techniques, which enhances the image quality of 
traffic camera footage and improves vehicle detection accuracy 
even under low visibility caused by rain. DLSS, which has 
been primarily used in the field of computer graphics, is 
adapted here for traffic monitoring to address the degradation 
in image clarity due to environmental factors, such as rain and 
fog. In addition, we introduce a unique approach that combines 
DLSS with multi-ROI pixel area analysis. This combination 
allows for more precise vehicle identification and counting, 
particularly in complex traffic scenarios where multiple lanes 
and irregular traffic flows must be considered. By focusing on 
specific regions of interest within the image, our method can 
better detect and track vehicles in congested areas, improving 
the granularity and accuracy of traffic data collected by 
cameras. Another important contribution is our comprehensive 
evaluation of the proposed method using the AAU RainSnow 
Traffic Surveillance Dataset. This dataset provides real-world 
data under various weather conditions, including rain, which 
allows us to demonstrate the robustness of our approach in 
realistic settings. The method not only outperforms traditional 
vehicle detection techniques under rain conditions, but also 
shows comparable performance to methods designed 
specifically for adverse weather conditions, making it a 
versatile solution for real-world traffic monitoring applications. 

II. METHOD 

The traffic analysis data processing relies on NVIDIA's 
tensor cores and is executed on a Graphics Processing Unit 
(GPU) [15]. The accumulation and averaging of pixel weights 
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from successive input images are the steps employed in the 
background subtraction algorithm via the accumulate-weighted 
method [16]. Figure 1 shows the algorithm utilized for the 
vehicle detection system. The input data are initially processed 
using background reconstruction and subtraction techniques. 
For each frame in the input video, the background image is 

subtracted. Background subtraction is performed using the 
accumulate-weighted method, where pixel weights from the 
input digital images are accumulated and averaged over time 
[17]. The average weights of the input frames are used to 
acquire the background image. The subtraction process 
produces an image showing only the objects. 

 

 

Fig. 1.  Proposed method for vehicle detection and counter. 

Following background subtraction, ROI segmentation, 
noise removal, and vehicle detection are performed. 
Segmentation isolates objects in an image so that their number 
in a frame can be counted. Otsu's thresholding method, which 
determines the optimal threshold value based on the intensity 
histogram of the input image, is employed for image 
segmentation [18]. DLSS applies super-sampling and deep 
learning-based denoising to the segmented image to eliminate 
or reduce weather-induced noise. 

The input noisy image � can be transformed into the clean 
image �. Minimize the objective function ���ℎ���	� directly 
using multiple images via (1) with ��� represents. 

ℒ � ∑  � ‖ℎ���� � ��‖�
�     (1) 

To improve network learning, the mapping range is 
compressed to reduce the solution space [19]. For simplicity, 
we assume that the images � and �, each containing D pixels, 
are normalized to the range [0, 1]. When a regression function 
is applied to map each D pixels, the residual values of the noisy 
image are generally smaller than those of a clean image within 
this range. Integrating these residuals can enhance the 
network's mapping capability. The residual is extracted from 
the parameter layers for the output, and the skip connection 
ensures the seamless flow of information across the network, 
facilitating precise estimation of the denoised image. In this 
context, noise typically introduces negative differences 
between the pixel values of � and �, often appearing as white 
streaks. This phenomenon is referred to as negative residual 
mapping. Equation (2) in the revised objective function reflects 
this concept. 

ℒ � ∑  � ‖ℎ���� � �� � ��‖�
�    (2) 

We used the ResNet architecture [20], specifically the 
negative residual mapping method, for its enhanced ability to 
distinguish noise streaks from object details in images. During 
training, the detailed layer transmits information to the 
parameter layers. First, we created a noisy image model using 
(3). 

� � �detail � �base     (3) 

The base layer can be obtained using low-pass filtering of 
�, and the detail layer can be obtained by �detail � � � �base. 
By subtracting the base layer, only weather noise streaks and 
object structures remain in the detail layer. We incorporated the 
detail layer �detail  and the negative residual mapping � � � 

into the parameter layers of ResNet. We call the network 
trained on the detail layer a deep detail network. The denoiser 
system takes the noisy image � as its input and generates an 
approximation of the clean image � as its output. In light of our 
previous discussion, (4) outlines the objective function. 

ℒ � ∑  �
��� �����, detail , �, �� � �� � ����

�
 (4) 

ResNet network parameters � and � are to be learned from 
� training images using � � �. We applied guided filtering as a 
low-pass filter to generate base and detail layers for �detail .The 
basic network structure can be represented as in (5), as the 
image indexing is eliminated in this network structure. 

�detail 
! � � � �base 

�detail 
� � " #BN��� ∗ �detail 

! � ���'
�detail 

�( � " #BN���( ∗ �detatil 
�()� � ��(�'

�detail 
�(*� � " #BN���(*� ∗ �detail 

�( � ��(*��' � �detail 
�()�

�approx 
�( � BN��+ ∗ �detail 

+)� � �+� � �

(5) 

For , � 1, … , +)�
� , the model involves applying batch 

normalization, convoluting weights and biases ��, �	 , and 
repeating until the final layer. "� � is a rectified linear unit for 
non-linearity, whereas BN� � indicates batch normalization to 
alleviate internal covariate shift. The proposed network retains 
spatial information by eliminating all pooling operations. For 
the initial layer, we generate a1 feature maps by implementing 
filters of size c × s1× s1× a1, where c is the number of image 
channels (1 for grayscale, 3 for color). Filters for layers 2 to L-
1 have dimensions a1 × s2× s2× a2. The last layer was defined 
with filters of size a2 × s3× s3× c for the estimation of the 
negative residual. The denoised image was formed by adding 
the estimated residual to the noisy image �. 

The subsequent step involves vehicle detection within the 
ROIs. The first process is to calculate the area of white pixels 
within the ROI resulting from Otsu's thresholding, which 
represents objects in the denoised image. The pixel count is 
then compared to a predefined vehicle threshold value. If the 
threshold is exceeded, it indicates the presence of a vehicle. 
This method employs multi-ROI to detect vehicles in various 
lanes, providing better detection accuracy compared to using a 
single ROI. The results of vehicle detection, the post-DLSS 
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processed images, and the vehicle counts for each lane are 
stored in a database. 

III. RESULTS AND DISCUSSION 

We assess our technique by employing the AAU RainSnow 
Traffic Surveillance Dataset [4]. This dataset consists of traffic 
camera recording from seven intersections under varying rain 
conditions. In our approach, vehicle detections in the videos are 
evaluated using a confusion matrix consisting of True Positives 
(TP), True Negatives (TN), False Positives (FP), and False 
Negatives (FN). We calculate accuracy metrics by comparing 
the number of true positives and true negatives to the overall 
detection results. To benchmark the performance of our 
method, we also evaluate several other methods on the same 
dataset. Some of these methods, such as pixel area [21], pixel 
area with multi-ROI [22], CNN [23], and CNN with feature 
concatenation [24], are not optimized for rain conditions. In 
addition, we evaluate test methods for handling rain conditions 
such as DCGAN [4], YOLOv3 [25], YOLO-UA [26], and 
DarkNet53 [27]. By comparing our proposed method to these 
existing approaches, we demonstrate its effectiveness in 
accurately detecting vehicles under challenging weather 
conditions. Our method outperforms existing methods in 
detecting objects in rainy traffic surveillance videos. The 
results of all methods are shown in Table I. 

Our method outperformed non-weather specialized 
methods at all intersections and outperformed specialized 
methods at certain intersections. It achieved the highest 
accuracy of 93.44% at the Hobrovej intersection and had the 
worst result among all specialized methods with a score of 
64.87% at the Hasserisvej intersection, but it was still superior 
to non-specialized methods. At the remaining intersections, 

satisfactory but not optimal results are achieved. At the 
Egensevej intersection, YOLOv3, DarkNet53, and DCGAN 
achieved higher accuracy than our method (81.31%). At the 
Hadsundvej intersection, our method achieved better 
performance than YOLOv3, Dark Net53, and DCGAN, 
although it did not reach the YOLO-UA benchmark of 87.46%. 
At the Hjorringvej intersection, our method achieved a result of 
73.12%, which was only lower compared to DCGAN's 
77.39%. At the Ostre intersection, it had a lower accuracy 
(68.12%) than YOLOv3 (84.59%) and DarkNet53 (77.43%). 
At the Ringvej intersection, our method achieved a higher 
accuracy of 92.78%, surpassing all but DarkNet53's 94.06%. 

Figure 2 illustrates the challenges posed by adverse weather 
conditions, such as rain and snow, on traffic camera footage 
and demonstrates the effectiveness of the proposed method in 
mitigating these challenges. The upper part of the figure shows 
raw images captured under rain and snow conditions, 
highlighting the significant degradation in image quality caused 
by environmental factors such as water droplets, reflections, 
and reduced visibility. These issues obscure critical details 
necessary for accurate vehicle detection and counting. The 
lower part of the figure shows the enhanced images after 
processing with our proposed DLSS and multi-ROI pixel area 
analysis method. Notably, the refined images exhibit improved 
clarity and detail, with reduced noise and enhanced visibility of 
vehicles. This improvement enables more reliable vehicle 
detection and counting, even under adverse environmental 
conditions. By comparing the raw and processed images, the 
figure underscores the ability of the proposed method to 
overcome the limitations of traditional traffic monitoring 
techniques in non-ideal weather scenarios. 

TABLE I.  ACCURACY RESULTS OF THE PROPOSED METHOD COMPARED TO OTHER METHODS ON THE AAU RAINSNOW TRAFFIC 
SURVEILLANCE DATASET 

No Method 

Intersection 

Egensevej 

(%) 

Hadsundvej 

(%) 

Hasserisvej 

(%) 

Hjorringvej 

(%) 

Hobrovej 

(%) 

Ostre 

(%) 

Ringvej 

(%) 

1 Proposed method 81.31 75.23 64.87 73.12 93.44 68.12 92.78 

2 Pixel area 19.82 41.71 27.74 30.34 25.25 41.90 18.85 

3 Multi-ROI pixel area 24.77 32.87 16.25 17.96 25.69 41.16 36.74 

4 CNN with feature concatenation 50.49 51.38 60.00 57.43 25.89 34.92 38.49 

5 DCGAN 87.24 58.69 95.75 77.39 71.42 62.84 78.41 

6 YOLOv3 85.21 68.75 78.87 66.02 90.49 84.59 73.22 

7 YOLO-UA 68.94 87.46 66.04 70.37 73.30 59.63 72.81 

8 DarkNet53 84.70 49.19 72.59 65.61 60.64 77.43 94.06 

 

 
Fig. 2.  Comparison of image quality and detection performance before and after applying the proposed method under adverse weather conditions. First row is 

the original image, second row is the image after applying the proposed method. 
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We took a closer look at the results of our experiments and 
saw the influence of certain weather types at each set of 
intersections on the obtained results. Therefore, we regrouped 
the results based on weather types, which consisted of rain and 
thunderstorm, as shown in Table II. The results obtained are 
really intriguing because the reliability of each method is not 
evenly distributed for all poor weather conditions. In rain 
conditions, our method demonstrates a notable performance, 
achieving an accuracy of 80.95%. This result reflects the 
effectiveness of our approach in dealing with moderate adverse 
weather conditions, where DLSS plays a crucial role in 
enhancing the quality of the input data, leading to improved 
detection accuracy. The ability of DLSS to upscale and denoise 
images is particularly beneficial in rain, where visual noise is 
less severe and more predictable, allowing the model to focus 
on refining key features and minimizing errors. Our method 
performs worst in thunderstorms, with an accuracy of 36.58%. 
This is even worse than one of the methods not designed for 
adverse weather conditions, CNN with feature concatenation, 
which achieved an accuracy of 37.01%. The significant drop in 
accuracy under thunderstorm conditions could be attributed to 
the severe challenges posed by these conditions, including 
heavy rain, lightning, and potentially low visibility, which 
significantly degrade the quality of the input data. DLSS, the 
technique utilized in our method, is designed to enhance 
resolution and detail, especially in more common or moderate 
scenarios like rain. However, in extreme weather conditions 
such as thunderstorms, where noise and visual artifacts are 
more complex and pronounced, DLSS may struggle to 
effectively reconstruct the fine details necessary for accurate 
object detection. The variability and intensity of visual 
disturbances in thunderstorms likely exceed the capacity of our 
current DLSS implementation to correct and enhance the input 
data, leading to the observed drop in performance. 

TABLE II.  ACCURACY RESULTS OF THE PROPOSED 
METHOD COMPARED TO OTHER METHODS ON THE AAU 

RAINSNOW TRAFFIC SURVEILLANCE DATASET: 
RESULTS FOR BAD WEATHER CONDITION TYPES 

No Method 

Weather Condition 

Rain  

(%) 

Thunderstorm 

(%) 

1 Proposed method 80.95 36.58 

2 Pixel area 62.37 56.88 

3 Multi-ROI pixel area 54.36 30.97 

4 CNN 62.61 26.29 

5 
CNN with feature 

concatenation 
52.64 37.01 

6 DCGAN 93.57 74.37 

7 YOLOv3 72.51 57.15 

8 YOLO-UA 69.16 68.46 

9 DarkNet53 87.54 80.92 

 
Moreover, while DLSS is powerful for refining images, its 

performance is highly dependent on the quality and type of 
training data. If the model was not adequately trained on data 
that simulated the specific challenges of thunderstorm 
conditions, it would naturally struggle to generalize to these 
scenarios, resulting in lower accuracy. This highlights the need 
to further enhance the model's robustness, possibly by 
incorporating more diverse and challenging weather data 
during training, or by developing additional pre-processing 

techniques specifically aimed at mitigating the unique 
disturbances present in thunderstorm conditions. 
Thunderstorms can cause rapid and unpredictable changes in 
the environment, such as sudden flashes of lightning, shifts in 
rain intensity, and variations in visibility. These rapid changes 
create inconsistencies in the input data that can be challenging 
for DLSS to handle effectively. Unlike some of the compared 
methods, which have certain resistance to such inconsistencies, 
DLSS is known to make highly overconfident predictions in 
the presence of uncertainty caused by these inconsistencies. 
This overconfidence can lead to significant errors in detection, 
as the model may misinterpret noise as meaningful features, 
resulting in lower accuracy. Under rain conditions, our method 
achieves an accuracy of 80.95%, which, while respectable, still 
falls short of the performance achieved by DCGAN (93.57%) 
and DarkNet5 (87.54%). This suggests that while DLSS 
improves performance in moderate conditions, there is room 
for optimization, particularly in how the model handles the 
varying intensities and types of noise introduced by adverse 
weather. 

The proposed method demonstrates significant 
improvements in vehicle detection under rain conditions, but 
several limitations must be acknowledged. Its performance 
under extremely adverse weather conditions, such as 
thunderstorms, remains limited. Thunderstorms introduce 
dynamic noise elements like lightning flashes and heavy 
rainfall, causing significant inconsistencies in the input data. 
These challenges highlight the need for advanced 
preprocessing techniques and training data augmentation 
tailored to such conditions. Additionally, the method relies 
heavily on the quality and diversity of the training data. A 
limited representation of rare or extreme weather scenarios in 
the dataset may restrict the model's ability to generalize 
effectively, emphasizing the importance of developing more 
extensive datasets that encompass a broader range of 
environmental conditions. Furthermore, the computational 
complexity of integrating DLSS with multi-ROI analysis can 
be challenging for real-time applications, especially in large-
scale traffic networks. Optimization techniques or hardware 
acceleration strategies, such as leveraging edge computing 
devices, could help address this issue. Finally, the method's 
reliance on visual data alone can be a significant drawback in 
scenarios with near-zero visibility scenarios. 

While the proposed method demonstrates strong 
performance in moderate adverse weather conditions, its 
limitations under thunderstorm scenarios highlight areas for 
future research. Future research to address these limitations can 
begin by exploring temporal noise filtering. This technique 
leverages the temporal consistency across successive frames to 
identify and suppress transient noise, such as flashes of 
lightning, that often disrupt vehicle detection. By focusing on 
patterns that persist over time, the detection system can reduce 
false positives caused by brief but intense disturbances and 
improve overall reliability. Another promising direction is the 
integration of additional sensing modalities, such as LiDAR or 
radar, which are less affected by the visibility issues common 
in thunderstorms. LiDAR, for instance, provides precise 
distance and object detection capabilities, while radar offers 
robustness to environmental noise like heavy rain. Combining 
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these modalities with the existing DLSS framework could 
create a complementary system where weaknesses in one 
sensor type are offset by the strengths of others, ensuring more 
reliable vehicle detection.  

Expanding the training dataset with augmented samples that 
simulate extreme weather scenarios, including thunderstorms, 
can significantly improve model robustness. Techniques such 
as applying synthetic rain effects, lightning patterns, and 
varying visibility levels to training data can better prepare the 
deep learning model for real-world conditions. This approach 
helps the model learn to distinguish noise from meaningful 
patterns, reducing the risk of misclassification under adverse 
weather conditions. Adversarial training approaches using 
Generative Adversarial Networks (GANs) can be employed to 
create realistic thunderstorm scenarios. GAN-generated data 
can mimic complex environmental factors such as varying rain 
intensity and dynamic lighting changes, offering a unique 
opportunity to fine-tune the model. By training the model to 
overcome these adversarial examples, it may develop enhanced 
resilience and generalization capabilities for handling extreme 
weather conditions. 

IV. CONCLUSIONS 

We introduced a method that combines Deep Learning 
Super Sampling (DLSS) and multi-Region of Interest (multi-
ROI) pixel analysis for vehicle detection under non-ideal 
environmental conditions. Our method demonstrated superior 
performance under rainy weather, showcasing its robustness 
compared to traditional approaches. While the method 
performed well under moderate adverse conditions, challenges 
remain in extreme scenarios, such as thunderstorms, where 
dynamic noise and visibility issues significantly affect 
accuracy. 

Future research could explore techniques such as temporal 
noise filtering to address transient noise like flashes of 
lightning in thunderstorms. In addition, the integration of 
complementary sensing modalities, such as LiDAR or radar, 
could mitigate the limitations of visual data in extreme weather 
conditions. Expanding the training dataset to include more 
diverse and challenging weather scenarios would further 
enhance model robustness and adaptability. By pursuing these 
future research directions, this study provides a foundation for 
developing more resilient and adaptable traffic monitoring 
systems. These advancements have the potential to 
significantly enhance Intelligent Transportation Systems (ITS) 
by improving traffic flow and safety under a wide range of 
environmental conditions. 

ACKNOWLEDGMENT 

The researchers would like to thank the Ministry of 
Research, Technology and Higher Education of the Republic of 
Indonesia for funding this research under the Fundamental 
Research Scheme in 2024 with Grand Number 
02035/UN4.22.2/PT.01.03/2024. 

REFERENCES 

[1] Q. Zhu, Y. Liu, M. Liu, S. Zhang, G. Chen, and H. Meng, "Intelligent 
Planning and Research on Urban Traffic Congestion," Future Internet, 

vol. 13, no. 11, Nov. 2021, Art. no. 284, https://doi.org/10.3390/ 
fi13110284. 

[2] M. Alam, J. Ferreira, and J. Fonseca, "Introduction to Intelligent 
Transportation Systems," in Intelligent Transportation Systems: 
Dependable Vehicular Communications for Improved Road Safety, M. 
Alam, J. Ferreira, and J. Fonseca, Eds. Cham, Switzerland: Springer 
International Publishing, 2016, pp. 1–17. 

[3] J. Lin, Y. Huang, X. Su, Z. Su, and P. Zhao, "An In-vehicle Camera 
Based Traffic Estimation in Smart Transportation," in 2019 IEEE 5th 
International Conference on Computer and Communications, Chengdu, 
China, 2019, pp. 2186–2192, https://doi.org/10.1109/ICCC47050.2019. 
9064182. 

[4] C. H. Bahnsen and T. B. Moeslund, "Rain Removal in Traffic 
Surveillance: Does it Matter?," IEEE Transactions on Intelligent 
Transportation Systems, vol. 20, no. 8, pp. 2802–2819, Aug. 2019, 
https://doi.org/10.1109/TITS.2018.2872502. 

[5] N. K. Jain, R. K. Saini, and P. Mittal, "A Review on Traffic Monitoring 
System Techniques," in Soft Computing: Theories and Applications, 
Proceedings of SoCTA 2017, Jhansi, India, 2019, pp. 569–577, https:// 
doi.org/10.1007/978-981-13-0589-4_53. 

[6] T. Pamula, "Road Traffic Conditions Classification Based on Multilevel 
Filtering of Image Content Using Convolutional Neural Networks," 
IEEE Intelligent Transportation Systems Magazine, vol. 10, no. 3, pp. 
11–21, 2018, https://doi.org/10.1109/MITS.2018.2842040. 

[7] I. C. Amitha and N. K. Narayanan, "Object Detection Using YOLO 
Framework for Intelligent Traffic Monitoring," in Machine Vision and 
Augmented Intelligence—Theory and Applications: Select Proceedings 
of MAI 2021, Jabalpur, India, 2021, pp. 405–412, https://doi.org/ 
10.1007/978-981-16-5078-9_34. 

[8] K. Yan and Z. Zhang, "Automated Asphalt Highway Pavement Crack 
Detection Based on Deformable Single Shot Multi-Box Detector Under 
a Complex Environment," IEEE Access, vol. 9, pp. 150925–150938, 
2021, https://doi.org/10.1109/ACCESS.2021.3125703. 

[9] D. Biswas, H. Su, C. Wang, A. Stevanovic, and W. Wang, "An 
automatic traffic density estimation using Single Shot Detection (SSD) 
and MobileNet-SSD," Physics and Chemistry of the Earth, Parts A/B/C, 
vol. 110, pp. 176–184, Apr. 2019, https://doi.org/10.1016/j.pce.2018.12. 
001. 

[10] S. Zhang, Y. Guo, P. Zhao, C. Zheng, and X. Chen, "A Graph-Based 
Temporal Attention Framework for Multi-Sensor Traffic Flow 
Forecasting," IEEE Transactions on Intelligent Transportation Systems, 
vol. 23, no. 7, pp. 7743–7758, Jul. 2022, https://doi.org/10.1109/TITS. 
2021.3072118. 

[11] C. Hu, L. Xu, Y. Guo, X. Jing, X. Lu, and P. Liu, "HSV-3S and 2D-
GDA for High-Saturation Low-Light Image Enhancement in Night 
Traffic Monitoring," IEEE Transactions on Intelligent Transportation 
Systems, vol. 24, no. 12, pp. 15190–15206, Dec. 2023, https://doi.org/ 
10.1109/TITS.2023.3308894. 

[12] W. Zhang, X. Sui, G. Gu, Q. Chen, and H. Cao, "Infrared Thermal 
Imaging Super-Resolution via Multiscale Spatio-Temporal Feature 
Fusion Network," IEEE Sensors Journal, vol. 21, no. 17, pp. 19176–
19185, Sep. 2021, https://doi.org/10.1109/JSEN.2021.3090021. 

[13] J. Shi and K. Yang, "An Improved Histogram Equalization Method in 
the Traffic Monitoring Image Processing Field," Journal of Computer 
and Communications, vol. 3, no. 11, pp. 25–32, Nov. 2015, https:// 
doi.org/10.4236/jcc.2015.311005. 

[14] C.-H. Hu et al., "Joint Image-to-Image Translation for Traffic 
Monitoring Driver Face Image Enhancement," IEEE Transactions on 
Intelligent Transportation Systems, vol. 24, no. 8, pp. 7961–7973, Aug. 
2023, https://doi.org/10.1109/TITS.2023.3258634. 

[15] X. Ji, J. Cheng, J. Bai, T. Zhang, and M. Wang, "Real-time enhancement 
of the image clarity for traffic video monitoring systems in haze," in 
2014 7th International Congress on Image and Signal Processing, 
Dalian, China, 2014, pp. 11–15, https://doi.org/10.1109/CISP.2014. 
7003741. 

[16] K. Mondal, R. Rabidas, and R. Dasgupta, "Single image haze removal 
using contrast limited adaptive histogram equalization based multiscale 
fusion technique," Multimedia Tools and Applications, vol. 83, no. 5, pp. 
15413–15438, Feb. 2024, https://doi.org/10.1007/s11042-021-11890-0. 



Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 20095-20101 20101  
 

www.etasr.com Warni et al.: Enhancing Traffic Counting in Rainy Conditions: A Deep Learning Super Sampling and … 

 

[17] S. Basak and S. Suresh, "Vehicle detection and type classification in low 
resolution congested traffic scenes using image super resolution," 
Multimedia Tools and Applications, vol. 83, no. 8, pp. 21825–21847, 
Mar. 2024, https://doi.org/10.1007/s11042-023-16337-2. 

[18] K. Guo et al., "Video Super-Resolution Based on Inter-Frame 
Information Utilization for Intelligent Transportation," IEEE 
Transactions on Intelligent Transportation Systems, vol. 24, no. 11, pp. 
13409–13421, Nov. 2023, https://doi.org/10.1109/TITS.2023.3237708. 

[19] Y. Jin, Y. Zhang, Y. Cen, Y. Li, V. Mladenovic, and V. Voronin, 
"Pedestrian detection with super-resolution reconstruction for low-
quality image," Pattern Recognition, vol. 115, Jul. 2021, Art. no. 
107846, https://doi.org/10.1016/j.patcog.2021.107846. 

[20] S. Nousheen and S. P. Kumar, "Novel Fog-Removing Method For The 
Traffic Monitoring Image," International Journal of Innovative 
Technology and Research, vol. 4, no. 5, pp. 4159–4162, Aug. 2016. 

[21] S. Markidis, S. W. D. Chien, E. Laure, I. B. Peng, and J. S. Vetter, 
"NVIDIA Tensor Core Programmability, Performance & Precision," in 
2018 IEEE International Parallel and Distributed Processing 
Symposium Workshops, Vancouver, Canada, 2018, pp. 522–531, https:// 
doi.org/10.1109/IPDPSW.2018.00091. 

[22] R. Chowdhury, F. Silvestri, and F. Vella, "A Computational Model for 
Tensor Core Units," in Proceedings of the 32nd ACM Symposium on 
Parallelism in Algorithms and Architectures, Virtual Event, USA, 2020, 
pp. 519–521, https://doi.org/10.1145/3350755.3400252. 

[23] C. M. Bautista, C. A. Dy, M. I. Mañalac, R. A. Orbe, and M. Cordel, 
"Convolutional neural network for vehicle detection in low resolution 
traffic videos," in 2016 IEEE Region 10 Symposium, Bali, Indonesia, 
2016, pp. 277–281, https://doi.org/10.1109/TENCONSpring.2016. 
7519418. 

[24] F. Zhang, C. Li, and F. Yang, "Vehicle Detection in Urban Traffic 
Surveillance Images Based on Convolutional Neural Networks with 
Feature Concatenation," Sensors, vol. 19, no. 3, Jan. 2019, Art. no. 594, 
https://doi.org/10.3390/s19030594. 

[25] L. Ge, D. Dan, and H. Li, "An accurate and robust monitoring method of 
full-bridge traffic load distribution based on YOLO-v3 machine vision," 
Structural Control and Health Monitoring, vol. 27, no. 12, Dec. 2020, 
Art. no. e2636, https://doi.org/10.1002/stc.2636. 

[26] C.-Y. Cao, J.-C. Zheng, Y.-Q. Huang, J. Liu, and C.-F. Yang, 
"Investigation of a Promoted You Only Look Once Algorithm and Its 
Application in Traffic Flow Monitoring," Applied Sciences, vol. 9, no. 
17, Sep. 2019, Art. no. 3619, https://doi.org/10.3390/app9173619. 

[27] M. Hassaballah, M. A. Kenk, K. Muhammad, and S. Minaee, "Vehicle 
Detection and Tracking in Adverse Weather Using a Deep Learning 
Framework," IEEE Transactions on Intelligent Transportation Systems, 
vol. 22, no. 7, pp. 4230–4242, Jul. 2021, https://doi.org/10.1109/ 
TITS.2020.3014013. 


