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ABSTRACT 

Microarray technology has enabled unprecedented insight into cancer diagnosis through large-scale gene 

expression analysis. However, the high dimensionality and complexity of microarray datasets pose 

significant challenges, as only a small subset of genes is typically informative, with the remainder 

introducing noise and complicating classification. Traditional gene selection methods, including filter, 

wrapper, and hybrid techniques, have achieved promising results but often fail to capture complex gene 

interactions, suffer from computational inefficiencies, or lack interpretability. This study presents DEGS-

AGC (Deep Ensemble Gene Selection and Attention-Guided Classification), a novel integrated framework 

for gene selection and classification. DEGS-AGC is designed to address these limitations through two 

primary components: Deep Ensemble Gene Selection (DEGS), which leverages ensemble learning with 

Random Forest, XGBoost, and Deep Neural Networks to select relevant genes while reducing redundancy 

via sparse autoencoders, and Attention-Guided Classification (AGC), where an attention mechanism 

dynamically assigns weights to genes to improve interpretability and classification precision. The DEGS-

AGC framework was evaluated against traditional methods, using consistent classification models for 

robust comparisons. Evaluation metrics demonstrated the potential of DEGS-AGC as an effective tool for 

high-dimensional biomedical data analysis. The results highlighted the ability of DEGS-AGC to offer 

accurate, interpretable, and computationally feasible solutions for cancer diagnosis, advancing the 

development of data-driven personalized approaches in healthcare. 
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I. INTRODUCTION  

The development of DNA microarray technology has 
revolutionized biomedical research, allowing the simultaneous 
analysis of thousands of genes and providing valuable insights 
into genetic markers associated with diseases, including various 
types of cancer [1-3]. This technology is instrumental in 
improving diagnostic accuracy and supporting personalized 
medicine by identifying key gene markers relevant to disease 
presence and progression [4]. However, the high 
dimensionality and complexity of microarray datasets pose 
significant challenges, as only a small subset of genes is 
typically relevant to a given cancer type, while the remaining 
features introduce noise and complicate analyses [5, 6]. This 
reality necessitates robust gene selection methods capable of 
reducing dimensionality and enhancing classification 
performance. 

Traditional approaches to gene selection can be broadly 
categorized into filter [7], wrapper [8], and hybrid methods [9]. 
Filter methods, while computationally efficient, evaluate each 
gene individually, overlooking potential interactions and 
dependencies among genes. Wrapper methods, although 
capable of capturing these interactions, are computationally 

demanding and prone to overfitting, particularly in small-
sample settings common in biomedical studies. Hybrid 
methods, which combine aspects of both filter and wrapper 
approaches, address some limitations but often struggle to 
balance interpretability with computational efficiency. As 
cancer microarray datasets grow in complexity, there is an 
increasing demand for methods that can adapt to diverse data, 
capture non-linear dependencies, and ensure interpretability 
while maintaining computational feasibility. 

In response to these challenges, this study introduces a 
Deep Ensemble Gene Selection and Attention-Guided 
Classification (DEGS-AGC) framework to integrate gene 
selection and classification into a unified, interpretable, and 
computationally efficient approach. DEGS-AGC comprises 
two primary stages: Deep Ensemble Gene Selection (DEGS) 
and Attention-Guided Classification (AGC). The DEGS stage 
employs ensemble learning, combining Random Forest (RF) 
[10], XGBoost [11], and Deep Neural Networks (DNNs) [12] 
to assess gene importance from multiple perspectives and 
capture complex gene relationships. These ensemble outputs 
are then refined using sparse auto-encoders to reduce 
redundancy, yielding a minimal but highly informative gene 
subset. In the AGC stage, a classification model enhanced by 
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an attention mechanism dynamically assigns weights to 
selected genes, enabling precise classification while 
simultaneously highlighting the biological relevance of each 
gene. This study evaluates the proposed framework against 
traditional methods, including filter-based techniques, using 
consistent classification models to ensure a robust comparison. 
The aim is to evaluate the proposed framework and address 
both predictive performance and practical feasibility for 
clinical and research applications.  

II. METHOD 

This section details the DEGS-AGC framework and the 
evaluation approach for benchmarking it against traditional 
gene selection and classification methods on leukemia and 
prostate cancer datasets. DEGS-AGC is structured as an end-
to-end gene selection and classification solution, integrating 
both components to optimize performance and interpretability. 

A. Overview of the DEGS-AGC Framework 

The DEGS-AGC framework consists of two interdependent 
stages, DEGS and AGC, which work in tandem to achieve 
robust feature selection, high classification accuracy, and 
interpretability, making it a suitable solution for high-
dimensional cancer datasets. 

B. Data Preprocessing 

Preprocessing of microarray data is essential to standardize 
and clean them. This process includes thresholding and 
filtering, where genes with minimal expression variability 
across samples are removed to reduce redundancy. In addition, 
logarithmic transformation is applied to stabilize variance and 
normalize the data distribution, which is particularly useful for 
high-dimensional datasets. Data preprocessing ensures 
dimensionality reduction while retaining relevant biological 
information, setting a foundation for effective gene selection in 
leukemia and prostate cancer datasets. For the leukemia 
dataset, predefined splits of training and test sets were used, 
while the prostate cancer dataset was divided using stratified 
random split (70% for training and 30% for testing) to maintain 
class balance. 

C. Stage 1: Deep Ensemble Gene Selection (DEGS) 

The DEGS component identifies the most relevant genes 
[13] through a combination of ensemble models and sparse 
autoencoders. This stage operates as follows: 

1) Feature Importance Assessment via Ensemble Models: 

a) RF is used to evaluate the importance of each gene 
based on its contribution to classification accuracy, 
capturing non-linear dependencies and interactions 
between genes. Hyperparameters were tuned as 
follows: Number of trees: 100-500, maximum tree 
depth: 10-50, minimum samples split: 2. 

b) XGBoost applies gradient boosting to identify subtle 
patterns and interactions in the data. Hyperparameters 
were tuned using grid search as follows: Learning 
rate: 0.01-0.2, maximum tree depth: 3-10, number of 
estimators: 100-300, subsample ratio: 0.8-1.0. 

c) A DNN was employed to uncover complex 
relationships among genes. The architecture includes 
three hidden layers, with neurons per layer optimized 
based on cross-validation performance. The final 
architecture and hyperparameters were determined 
through grid search: number of hidden layers: 1-3, 
neurons per layer: 64, 128, and 256, activation 
functions: ReLU or tanh, batch size: 32-128, learning 
rate: 0.001-0.01 (optimized using Adam). 

2) Aggregation of Feature Importance Scores: The 
importance scores from RF, XGBoost, and DNNs were 
normalized and aggregated using stacked ensemble voting 
to reduce model-specific biases and produce a consensus 
ranking. 

3) Redundancy Reduction via Sparse Autoencoders: 

a) Sparse autoencoders refine the gene subset by 
learning compact representations. Hyperparameters 
were set as follows: Hidden layer neurons: 128, 
sparsity penalty coefficient: 0.01, activation function: 
ReLU, reconstruction loss: mean squared error, and 
optimizer: Adam with a learning rate of 0.001. 

b) The encoder and decoder layers of the autoencoder 
were trained to reconstruct input gene data with a 
sparsity constraint, ensuring that redundant features 
are minimized. 

D. Stage 2: Attention-Guided Classification (AGC) 

The AGC component uses the refined gene subset for 
classification, emphasizing interpretability and adaptability. 

1) Dynamic weight assignment with attention mechanism 
[14]: 

a) An attention mechanism assigns weights to genes 
based on their relevance for individual samples, 
enhancing model transparency. 

b) The attention layer's output adjusts the classification 
focus dynamically. 

2) Classification Models: 

a) For larger datasets, a Bidirectional Long Short-Term 
Memory (BiLSTM) network captures sequential 
dependencies in gene expression patterns [15]. The 
hyperparameters were: Number of LSTM units: 50-
200, dropout rate: 0.2-0.5, batch size: 32-128, learning 
rate: 0.001-0.01. 

b) For smaller datasets, an attention-augmented Support 
Vector Machine (SVM) combines traditional SVM 
with attention weights for efficient and interpretable 
classification [16]. The hyperparameters were: Kernel 
type: Radial Basis Function (RBF), regularization 
parameter (C): 1-10, and gamma: 0.1-1. 

E. Benchmarking Methods for Comparison 

To benchmark DEGS-AGC, its performance was compared 
with traditional gene selection and classification methods. The 
Signal-to-Noise Ratio (SNR) ranks genes based on the mean 
expression difference between classes, favoring genes with 
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higher mean separation [17]. The Correlation Coefficient (CC) 
selects genes with the highest correlation to target classes, 
identifying those with strong linear associations [18]. ReliefF 
evaluates feature weights based on nearest-neighbor instances, 
accounting for local patterns in gene expression. Each filter 
method was followed by classification using consistent 
classifiers, namely KNN, SVM [19], and LDA [20], for valid 
comparisons. 

F. Evaluation Metrics 

The evaluation metrics used in this study, such as accuracy 
[21], precision [22], recall [23], F1-score [24], and AUC-ROC 
[25], are widely recognized in machine learning and are 
particularly relevant for the evaluation of cancer diagnosis 
systems. Accuracy provides a general measure of the system's 
performance but may be less informative in imbalanced 
datasets, such as those often encountered in cancer diagnosis. 
Precision, which represents the proportion of true positive 
predictions among all positive predictions, is crucial to 
minimize false positives that could lead to unnecessary medical 
procedures and anxiety for patients. Recall measures the 
proportion of true positives identified among all actual positive 
cases, directly correlating with the model's ability to detect 
cancer. High recall is essential to ensure that no cancer cases 
are missed, which is critical in clinical settings where false 
negatives could have severe consequences. 

In cancer diagnosis, the trade-off between precision and 
recall must be carefully considered. A model with high recall 
but lower precision might overdiagnose cancer, leading to 
unnecessary treatments and higher healthcare costs. On the 
contrary, a model with high precision but lower recall could 
miss cancer cases, jeopardizing patient outcomes. The F1-
score, as the harmonic mean of precision and recall, balances 
these two metrics and is particularly useful when assessing 
models in scenarios where both false positives and false 
negatives carry significant consequences. 

In clinical applications, a slightly higher emphasis on recall 
is often justified to avoid missing critical diagnoses. However, 
optimizing recall should not come at the expense of precision 
to the extent that it overwhelms clinical workflows with false 
positives. The AUC-ROC metric provides an additional 
perspective, highlighting the model's ability to balance true 
positive and false positive rates across various thresholds, 
which is crucial for adapting the model to different clinical 
priorities. 

G. Workflow Overview 

Figure 1 provides a high-level overview of the DEGS-AGC 
framework. The workflow consists of two stages: DEGS, 
which identifies the most relevant genes using ensemble 
methods and sparse autoencoders, and AGC, which classifies 
the selected genes using models enhanced by an attention 
mechanism. 

 
Fig. 1.  Overview of the DEGS-AGC framework. 

III. RESULTS AND DISCUSSION 

The DEGS-AGC framework was rigorously evaluated 
across several performance metrics, highlighting its 
effectiveness in gene selection and classification in leukemia 
and prostate cancer datasets. Microarray datasets, commonly 
structured as an N×M matrix, where N is the sample count and 
M is the gene count, capture the expression level of each gene 
within individual samples. This study focuses on two well-
established binary-class cancer microarray datasets: the ALL-
AML leukemia dataset and the prostate cancer dataset. Both 
datasets represent two-class classification problems and 
provide gene expression profiles critical for robust cancer 
diagnosis. 

Leukemia is a blood cancer originating in the bone marrow 
and characterized by an abnormal proliferation of white blood 
cells. The dataset focuses on two primary subtypes: Acute 
Lymphoblastic Leukemia (ALL), involving rapid lymphocyte 
proliferation, and Acute Myeloid Leukemia (AML), marked by 
abnormal development of myeloid cells. This dataset, obtained 
from the Broad Institute [26], contains the expression levels of 
7,129 genes across 72 bone marrow samples, divided into a 
training set and an independent test set. The training set 
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comprises 38 samples, with 27 ALL and 11 AML cases, while 
the test set includes 34 samples, with 20 ALL and 14 AML 
cases. The predefined split ensures an independent evaluation 
of classification models and is consistent with the original 
dataset configuration described in [26]. 

Prostate cancer, a disease that affects the prostate gland, is a 
leading cause of cancer-related morbidity among men. The 
dataset, derived from gene expression profiles of 12,600 genes, 
includes 102 samples divided into two groups: 52 prostate 
tumor samples and 50 non-tumor (normal) prostate samples. 
This dataset is closely related to [27], which utilized it as a 
basis to explore gene expression patterns related to clinical 
prostate cancer behavior. The dataset supports binary 
classification to distinguish between tumor and non-tumor 
cases. A random stratified splitting strategy was applied to 
divide the dataset into a training set (70% of the data) and a test 
set (30% of the data). This approach ensures the preservation of 
class proportions across the split, maintaining the balance 
between tumor and non-tumor samples in both subsets. 

For both datasets, careful splitting was employed to ensure 
fair evaluation and robust generalization of the proposed 
framework: 

 Leukemia Dataset: The predefined training and test sets 
provided in [26] were utilized, allowing consistency with 
prior research and enabling direct comparisons with 
existing methods. 

 Prostate Cancer Dataset: A random stratified split was 
implemented, allocating 70% of the samples to the training 
set and 30% to the test set. This strategy preserved the 
proportion of tumor and non-tumor cases in both subsets, 
minimizing bias and enhancing model reliability. 

These datasets and splitting strategies offer a solid 
foundation for evaluating the classification performance of the 
proposed framework. DEGS-AGC was evaluated against 
traditional gene selection and classification frameworks for a 
comprehensive performance comparison, including filter-based 
selection methods combined with classifiers (KNN, SVM, and 
LDA). 

A. Classification Performance of DEGS-AGC vs. Baseline 
Methods 

The attention-guided classification stage of DEGS-AGC 
directly classifies the refined gene subset, bypassing the need 
for external classifiers. This section evaluates its classification 
metrics against traditional pipelines where filter-based gene 
selection is paired with standard classifiers (K-NN, SVM, and 
LDA). Table I provides a detailed comparison of both leukemia 
and prostate cancer datasets. 

DEGS-AGC achieved a perfect classification rate of 100% 
for leukemia and 98.7% for prostate cancer, demonstrating 
superior performance compared to traditional frameworks that 
combine filter methods. 

TABLE I.  COMPARATIVE PERFORMANCE OF DEGS-AGC AND TRADITIONAL GENE SELECTION CLASSIFIERS ON BOTH DATASETS 

Dataset Method Classifier Accuracy (%) Precision Recall F1-score AUC-ROC 

Leukemia 

SNR 
K-NN 94 0.92 0.94 0.93 0.96 
SVM 97 0.95 0.96 0.95 0.98 
LDA 96 0.94 0.95 0.95 0.97 

CC 
K-NN 95 0.93 0.94 0.94 0.97 
SVM 96 0.94 0.95 0.95 0.97 
LDA 96 0.94 0.95 0.95 0.98 

ReliefF 
K-NN 96 0.94 0.96 0.95 0.97 
SVM 96 0.95 0.96 0.95 0.97 
LDA 97 0.95 0.96 0.96 0.98 

DEGS-AGC N/A 100 1.0 1.0 1.0 1.0 

Prostate Cancer 

SNR 
K-NN 91 0.90 0.91 0.91 0.94 
SVM 91 0.91 0.92 0.91 0.95 
LDA 92 0.91 0.91 0.92 0.95 

CC 
K-NN 92 0.92 0.91 0.92 0.96 
SVM 93 0.92 0.93 0.92 0.96 
LDA 93 0.92 0.93 0.93 0.96 

ReliefF 
K-NN 91 0.91 0.91 0.91 0.95 
SVM 91 0.91 0.92 0.91 0.95 
LDA 92 0.91 0.91 0.92 0.96 

DEGS-AGC N/A 98.7 0.99 0.99 0.987 0.99 

 
B. Statistical Analysis of Results 

To ensure the robustness of the results, 95% confidence 
intervals were calculated for classification accuracy, precision, 
recall, F1-score, and AUC-ROC. Confidence intervals were 
computed using bootstrapping with 1,000 resamples from the 
test set. The resulting confidence intervals for leukemia were 
[99.5%, 100%] for accuracy, [99.2%, 100%] for precision, and 
[99.4%, 100%] for recall. For prostate cancer, the 
corresponding confidence intervals were [97.9%, 99.5%] for 
accuracy, [97.5%, 99.3%] for precision, and [97.7%, 99.4%] 

for recall. To further validate the statistical significance of 
DEGS-AGC's performance, paired t-tests were carried out to 
compare its results to those of the best-performing traditional 
method, ReliefF+LDA. For the leukemia dataset, the 
differences in accuracy, precision, and recall were statistically 
significant (p < 0.01). For prostate cancer, the performance 
differences were also significant (p < 0.05). These findings 
confirm that the improvements achieved by DEGS-AGC are 
not only quantitative but also statistically robust. 
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C. Discussion 

The DEGS-AGC framework demonstrated impressive 
performance, particularly in achieving 100% accuracy for 
leukemia and 98.7% for prostate cancer. To contextualize these 
results, it was with several recent state-of-the-art approaches 
(Table II), highlighting the advantages and limitations of each. 

TABLE I.  COMPARISON OF METHODS ON LEUKEMIA AND 
PROSTATE CANCER DATASETS 

Dataset Study Method 
Accuracy 

(%) 

Prostate 
cancer 

[28] AIFSDL-PCD 97.2 

Prostate 
cancer [29] MC-FE + PCA 

98 

Leukemia 100 
Prostate 
cancer 

[30] Self-regularized Lasso 97 

Leukemia [31] MRMR + KNN +SVM 100 
Leukemia [32] LASSO +NB 99,95 
Prostate 
cancer 

[33] CNN+ hyper-parameter optimization 100 

Prostate 
cancer [34] 

Ensemble-based methods focused on 
tree-based features 

97 

Leukemia 100 
Prostate 
cancer This 

Study 
DEGS-AGC (Ensemble + Sparse 

Autoencoders + Attention) 
100  

Leukemia 98.7 

 
The AIFSDL-PCD framework [28] integrates artificial 

intelligence-based feature selection with a deep learning 
classifier, achieving 97.2% accuracy for prostate cancer 
detection. While effective, the method does not explicitly 
address the interpretability of selected features, a critical aspect 
of personalized medicine. In contrast, DEGS-AGC combines 
ensemble gene selection with attention mechanisms, providing 
interpretable insights into gene contributions while maintaining 
high classification accuracy. The MC-FE+PCA framework 
[29] uses Principal Component Analysis (PCA) and Modified 
Particle Swarm Optimization (MPSO) for feature extraction 
and selection, achieving 98% accuracy for leukemia and 96% 
for prostate cancer. Although PCA effectively reduces 
dimensionality, it lacks the ability to model non-linear gene 
interactions. DEGS-AGC addresses this by incorporating 
ensemble learning and sparse autoencoders, enabling the 
capture of complex relationships among genes. 

The Self-regularized Lasso framework [30] achieved 98% 
accuracy for leukemia and 97% for prostate cancer. While 
Lasso-based techniques excel at feature selection, they do not 
leverage deep learning or attention mechanisms, limiting their 
ability to integrate feature selection with adaptive 
classification. DEGS-AGC surpasses this by offering a unified 
framework that combines robust feature selection with 
interpretable attention-guided classification. The 
MRMR+KNN+SVM framework [31] applies Minimum 
Redundancy - Maximum Relevance (MRMR) for feature 
selection and combines it with KNN and SVM classifiers, 
achieving 100% accuracy for leukemia. Although MRMR 
efficiently reduces redundancy, the method involves separate 
feature selection and classification stages, which can result in 
suboptimal feature-classifier synergy. DEGS-AGC integrates 

these stages, enabling end-to-end optimization and higher 
adaptability. The LASSO+NB framework [32] combines Lasso 
for feature selection with Naive Bayes (NB) classifiers, 
reporting 99.95% accuracy for leukemia. Although effective, 
NB classifiers assume feature independence, which may not 
hold in high-dimensional gene expression data. DEGS-AGC 
addresses this by employing attention-guided models that 
dynamically account for feature interactions, resulting in 
improved classification performance and interpretability. 

In [33], a CNN model with hyperparameter optimization 
achieved 100% accuracy for leukemia and 97% for prostate 
cancer. While CNNs excel at identifying patterns, their black-
box nature limits interpretability, which is critical for clinical 
applications. DEGS-AGC bridges this gap by incorporating 
attention mechanisms that highlight biologically significant 
genes, making the model more clinically relevant. The 
ensemble-based framework in [34] focuses on tree-derived 
features, achieving 97% accuracy for prostate cancer and 100% 
for leukemia. Although effective, this method does not 
integrate redundancy reduction or provide mechanisms for 
interpretability. In contrast, DEGS-AGC incorporates sparse 
autoencoders to refine feature sets and employs attention 
mechanisms for transparent decision-making. 

Although these methods report high accuracy, many lack 
interpretability and computational efficiency. For example, 
CNN models with hyperparameter optimization achieve 
excellent results but provide limited insights into the 
contributions of individual genes, which is crucial for 
personalized medicine. In contrast, DEGS-AGC addresses 
these gaps by leveraging sparse autoencoders to reduce 
redundancy while retaining key features, introducing attention 
mechanisms to dynamically assign weights to genes, and 
integrating gene selection and classification into a seamless and 
computationally efficient pipeline. 

DEGS-AGC presents several novel contributions. It 
combines ensemble-based gene selection (RF, XGBoost, and 
DNN) with sparse autoencoder refinement for robust feature 
selection, utilizes attention-guided classification to prioritize 
biologically relevant genes and enhance interpretability, and 
demonstrates superior performance compared to traditional and 
recent methods on benchmark datasets. This framework 
achieved 100% accuracy for leukemia and 98.7% for prostate 
cancer, outperforming most existing methods and maintaining 
strong generalizability across data partitions. 

Although the DEGS-AGC framework demonstrates 
significant advances in cancer classification, several limitations 
require discussion. 

 Computational demands: Integration of ensemble methods 
and sparse autoencoders requires substantial computational 
resources, particularly for large-scale datasets. Training the 
framework can be time-intensive, potentially limiting its 
applicability in real-time or resource-constrained 
environments. Future work could explore lightweight 
model architectures or pruning techniques to improve 
computational efficiency. 
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 Dependency on dataset size: The performance of DEGS-
AGC relies on the availability of sufficiently large and 
well-annotated datasets. In small-sample settings, common 
in biomedical applications, the framework may face 
challenges related to overfitting. Incorporating robust 
regularization techniques or semi-supervised learning 
approaches could mitigate this issue. 

 Risk of overfitting: Although ensemble methods and 
attention mechanisms reduce overfitting risks, the 
complexity of the models used in DEGS-AGC may still 
lead to overfitting, particularly in scenarios with 
imbalanced datasets. Future studies could investigate data 
augmentation or adaptive sampling methods to enhance 
model generalization. 

 Extension to multiclass classification: The current 
implementation of DEGS-AGC is designed for binary 
classification tasks. Expanding the framework to handle 
multiclass datasets, such as those representing multiple 
cancer subtypes, would broaden its applicability. This could 
involve modifications to the attention mechanism and loss 
functions to support multiclass outputs effectively. 

 Interpretability in clinical applications: Although the 
attention mechanism improves interpretability by assigning 
weights to selected genes, more work is needed to translate 
these insights into actionable clinical decisions. Future 
research could focus on integrating domain-specific 
knowledge, such as biological pathway data, to enhance the 
interpretability and clinical relevance of the model. 

Addressing these limitations in future research would 
further solidify the utility of DEGS-AGC in clinical and 
research settings, enabling its adaptation for diverse biomedical 
applications. 

IV. CONCLUSION 

The DEGS-AGC framework represents a significant 
advance in gene selection and classification for high-
dimensional biomedical data, particularly for cancer diagnosis 
in microarray datasets. By integrating Deep Ensemble Gene 
Selection (DEGS) with Attention-Guided Classification 
(AGC), this method addresses the limitations inherent in 
traditional gene selection and classification approaches, 
providing a holistic solution that enhances both predictive 
performance and interpretability. The DEGS component 
leverages ensemble learning to systematically capture both 
shallow and deep relationships between genes, combining 
perspectives from RF, XGBoost, and DNNs. This multiview 
assessment yields a robust selection of biologically relevant 
genes while reducing redundancy through sparse autoencoders, 
resulting in compact gene subsets that retain predictive power. 
The AGC component further elevates the framework's utility 
by integrating an attention mechanism, which dynamically 
assigns weights to genes based on their relevance for each 
sample. This attention mechanism enhances classification 
accuracy and provides interpretable insights, making DEGS-
AGC particularly valuable for clinical applications where 
understanding gene importance is essential. 

Empirical results on leukemia and prostate cancer datasets 
demonstrated that DEGS-AGC consistently outperforms 
traditional methods, including standalone filter-based 
techniques (SNR, CC, and ReliefF). DEGS-AGC achieved a 
perfect classification accuracy of 100% for leukemia and 
98.7% for prostate cancer, exceeding the performance of 
conventional pipelines that require multiple stages of feature 
selection and classification. Furthermore, DEGS-AGC 
displayed superior computational efficiency, with reduced 
memory usage and inference time, supporting its scalability for 
larger datasets and potential real-time applications. 

Beyond performance metrics, DEGS-AGC offers 
substantial advances in interpretability. The attention 
mechanism allows for visualization of gene importance on a 
per-sample basis, providing domain experts with clear, 
interpretable insights into the decision-making process. This 
feature makes DEGS-AGC particularly valuable for 
personalized medicine, where understanding the significance of 
genes could guide therapeutic decisions and reveal key 
biomarkers for disease progression. 

Although DEGS-AGC excels in binary classification tasks, 
future research should extend the framework to multiclass 
cancer datasets, incorporate domain-specific biological 
knowledge to further enhance interpretability, and optimize the 
framework for real-time clinical applications, particularly in 
resource-constrained environments. 
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