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ABSTRACT 

The challenge of determining the shortest path within a multimodal transportation network involves 

identifying the most efficient travel route while considering various interconnected modes of 

transportation, such as roads, railways, and public transit. This problem becomes increasingly complex 

when numerous criteria and modes are involved, complicating the decision-making process. This study 

proposes a novel approach to computing the shortest path in multimodal networks, focusing on four modes 

of transportation: metro, trams, buses, and taxis. The optimization criteria include distance, travel time, 

and monetary cost. The proposed method utilizes a new metaheuristic called Optimization by 

Morphological Filters (OMF), inspired by image processing techniques. This approach was compared with 

the Genetic Algorithms (GA) and the Non-Dominated Sorting Genetic Algorithm II (NSGA-II). 

Experiments were carried out using graph models of multimodal transport networks that closely resemble 

real-world scenarios varying in size. Furthermore, the proposed method was evaluated using a real 

network from the city of Lyon, France. The results demonstrate that the OMF approach performs well in 

terms of convergence to optimal solutions and computation time. 

Keywords-multicriteria optimization; shortest path; multimodal transport networks; optimization by 

morphological filters; graph modeling 

I. INTRODUCTION  

A multimodal transport network can be defined as an 
integrated system that combines various modes of transport. Its 
primary goal is to facilitate the movement of passengers and 
goods from one location to another. The network is 
characterized by a series of routes and pathways connecting 
different nodes. These nodes, which include terminals and 
interchange points, serve as critical junctures where travelers 
can switch from one mode of transportation to another. In a 
multimodal system, passengers enjoy the flexibility to use a 
combination of transportation modes based on their individual 
needs and preferences. By leveraging the strengths of different 
modes, the system aims to mitigate the drawbacks associated 
with each, thus enhancing overall efficiency and convenience. 

Transport planning is a widely researched topic due to its 
relevance to real-world applications. Most research efforts in 
this field focus on two key aspects: modeling transport 
networks and solving routing issues. The first involves defining 
how to represent a transport system, while the second pertains 
to developing algorithms to address the routing challenges 
faced by travelers and transport operators. The modeling of 
multimodal transport systems is crucial and has been the focus 
of numerous studies. In [1], a mathematical framework of 
multilayer networks was presented and applied to survey 
models of multimodal infrastructures, focusing on integrated 
real-world mobility patterns. In [2], the multimodal discrete 
network design problem was investigated, a super network 
topology was presented, and a bi-objective programming 
model was proposed to optimize network operations. 



Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 19856-19864 19857  
 

www.etasr.com Kateb Hachemi Amar et al: Solving Multi-Criteria Shortest Path by Optimization with … 

 

With the evolution of navigation systems, the transport 
planning problem has received considerable attention. Many 
studies aim to identify optimal routes in multimodal transport 
networks to optimize various criteria, such as distance and time 
cost. However, several challenges arise, including difficulties 
in managing live multimodal transport networks. The situation 
becomes particularly complex when the criteria to be optimized 
conflict with each other, such as balancing time and cost or 
prioritizing distance while ensuring safety.  

The most exact methods for route planning problems in 
multimodal transportation networks are based on classical SP 
algorithms such as Dijkstra, Bellman-Ford, and A*. Various 
extensions of these algorithms have been proposed to find 
exact solutions for SP in multimodal transportation networks. 
These extensions consider the complexities introduced by 
transfer stations and aim to optimize various criteria such as 
travel time, cost, and environmental impact. For example, in 
[3], an extension of Dijkstra's algorithm was proposed to solve 
multiobjective path planning problems in urban multimodal 
transportation systems. This approach was based on 
transforming the problem into a classical SP with a single 
objective function by aggregating a weighted sum of modal 
characteristics along a path. In [4], an A*-label setting 
algorithm was proposed to compute constrained SPs in a 
multimodal network. In this approach, each edge was 
characterized with a vector of resource consumption in addition 
to travel time. In [5], two improved algorithms were proposed 
to solve the MCSP problem in a multimodal transport network, 
using transfer delay alone and in conjunction with the arrival 
time window. In [6], two approaches were presented to solve 
the SP problem in multimodal transportation networks using 
the k-shortest path algorithm and Geographic Information 
Systems (GIS). 

Most problems in multimodal transportation belong to 
multiobjective optimization problems. Therefore, heuristics and 
metaheuristics have emerged as invaluable tools for solving 
several routing issues. In [7], a new heuristic method known as 
the Path Composition Approach was presented, which 
identifies the optimal path in a bimodal network based on user 
preferences. This method works by partitioning the entire path 
into distinct subpaths and then recombining them to construct 
the final paths. In [8], a new time-dependent SP algorithm was 
introduced, which used the A* algorithm within a heuristically 
restricted search space in a multimodal transportation network. 
In [9], an advanced hybrid heuristic approach was introduced, 
combining a GA with Variable Neighborhood Search (VNS). 
In [10], a memetic algorithm was proposed, in which a GA was 
combined with the Hill Climbing (HC) local search algorithm 
to solve the MCSP problem in a multimodal network. In [11], a 
new approach was proposed for the time-dependent multimodal 
transport problem, based on Dijkstra and ant colony 
optimization. In [12], a memetic approach was proposed to 
solve the problem of the Hub-and-Spoke-based Road-Rail 
Intermodal Transportation (HS-RRIT) network. This approach 
integrated a GA to effectively traverse the search space, 
complemented by two local search methods, namely shift and 
exchange, to exploit information in the search space.  

In [13], a hybrid approach was proposed, combining 
population-based simulated annealing with an exact method to 
solve the intermodal freight transport problem. GA has been 
widely used to solve multicriteria optimization problems. In 
[14], a new GA was introduced for the SP problem in a 
multimodal transportation network. This approach was based 
on two novel genetic operators, namely hypercrossover and 
hypermutation, designed to optimize the solution space more 
effectively. In [15], the generalized traveling salesman problem 
was examined, which aims to find the minimum cost tour in a 
clustered set of cities. A hybridization between GA and Nearest 
Neighbor Search (NNS) was proposed, and a heuristic mutation 
operator was used. In [16], an Elitism Multi-Objective 
Evolutionary (EMOE) algorithm was proposed to address a 
multiobjective routing problem within a multimodal public 
transport network. The routing objectives were to minimize 
travel expense, time, and discomfort with three modes of 
transport, including tram, bus, and taxi. The proposed 
algorithm, based on the Non-Dominated Genetic Algorithm II 
(NSGAII), was implemented and evaluated using simulated 
data from a large network consisting of 150 vertices and 2600 
edges. 

This study proposes a novel method using Optimization 
with Morphological Filters (OMF) to tackle the MCSP problem 
in multimodal transportation networks. OMF is a recent 
neighborhood-based stochastic optimization algorithm inspired 
by morphological transformations that searches for the global 
optimum in a multidimensional space using morphological 
filters. The OMF method was initially introduced in [17]. Since 
then, it has been applied in various fields, demonstrating its 
versatility and effectiveness. It was employed in [18] to address 
engineering optimization problems without relying on penalty 
functions. Additionally, in [19], its application was extended to 
tackle combined economic and emission dispatch problems in 
power systems. To date, OMF has not been used to solve 
MCSP in multimodal transportation networks, which 
constitutes the primary objective of this research. This study 
considers various modes of transport, including metro, trams, 
buses, and taxis, reflecting the diverse choices available to 
travelers. Several criteria are analyzed, including distance, total 
travel time, and monetary cost, to ensure a comprehensive 
assessment of transportation options. 

The proposed approach was rigorously evaluated using 
network models of varying sizes that closely resemble real-
world conditions. Additionally, it was tested on an actual 
transportation network using data from the city of Lyon, 
France. This practical application demonstrates the 
effectiveness of OMF in optimizing multimodal transportation 
planning and highlights its potential to improve decision-
making in complex urban environments. Furthermore, the 
results indicate that OMF outperforms traditional methods in 
several key aspects, such as solution quality and computational 
efficiency. By integrating various transportation modes and 
optimizing for multiple criteria, this approach paves the way 
for more sustainable and user-friendly transportation systems. 
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II. MULTIMODAL TRANSPORTATION NETWORK 
MODELING 

The multimodal transportation network is modeled by a 
multigraph model, where each transportation mode is presented 
by a subgraph. The union between all graphs forms the global 
graph. Three transportation modes are considered: Tram, Bus, 
and Taxi. The SP is calculated by considering three criteria: 
distance, travel time, and cost. 

A. Multigraph Representation 

Let � � ��, �� be a multigraph representing a multimodal 
transport network where � is the set of vertices (stations, stops) 
and � is the set of edges that represent the connections between 
nodes. Let �� � ��� , ��� be the subgraph that represents the 
transportation network for mode 
. �� ⊂ � and �� ⊂ �  are the 
mode-specific vertices and links, respectively. Unlike a 
partitioned graph, it is not mandatory for two distinct subgraphs 
�� and �  to have disjoint vertex sets, i.e., �� ∩ � � ∅ is not 
required. However, it is essential that the edge sets are disjoint, 
meaning �� ∩ � � ∅ must be always held. Any node 
 ∈ �� ∩
� is a transfer node. In other words, a transfer point is a node 
that belongs to more than one subgraph, facilitating transfers 
between different transport modes within the network. This 
transfer process may involve various considerations, such as 
waiting times, accessibility features, and the availability of 
information on connecting services. For example, in [20], 
acceptable wait times beyond the scheduled bus arrival time at 
bus stops were determined, and predictive models were 
developed to provide additional tools to decision-makers to 
improve transportation. 

Understanding these transfers is crucial for optimizing 
travel efficiency and improving the overall user experience in 
multimodal transportation systems. This framework enables the 
analysis of various transportation modalities within a single 
integrated network, enhancing operational efficiency and user 
experience. Figure 1 illustrates an example of a multigraph 
representation of a multimodal transportation network with 
three modes and six transfer nodes, highlighting the 
interactions and connections between different transportation 
systems. 

 

 
Fig. 1.  The proposed multimodal transportation network model. 

B. Considered Criteria 

Let �  be a multimodal path between a starting node 
�� � ��  and a destination node �� � ��  in graph � . This 
path is represented as an ordered sequence of triplets, each 
consisting of edges connecting the nodes along the journey. 
The segments between these two nodes can be expressed as 
follows: 

� � ����, ��, ���, ���, ��, ���, ���, �� → ���, …  

�����, ��, ��� .    (1) 

where: 

 Each segment ��� , ��!�, ��) represents a connection from 
node �� to node ��!� using mode ��. 

 Each segment ��� , �� → �" ) represents a transfer from 
mode �� to mode �"  at the transfer node �� . 

The criteria considered for calculating the SP include 
distance, travel time, and cost. 

1) Distance 

The global distance of a given path �
#$��� is defined as: 

�
#$��� � ∑ &
#$��� , �' , ����() ,(*,+,�∈-   (2) 

where ��� , �' , ���  is the distance between nodes ��  and �' 
when using mode ��. This distance reflects the physical 
separation between the two nodes, measured along the specific 
route taken by mode ��. 

2) Travel Time 

This factor accounts for the duration of the journey, 
including potential delays and transfer times, and is crucial for 
passengers prioritizing efficiency and timely arrivals. The 
travel time of a given path P is calculated according to: 

/
�0��� �
∑ $
�01�� , �' , ��2 3�(),(*,+,�∈-

    ∑ $4�56_$
�0��� , ��, �"��(),+,,+8�∈-   (3) 

where $
�01�� , �' , ��2 is the travel time between nodes ��  and 

�'  when using mode �� . This travel time accounts for the 
duration of the journey along the designated route, influenced 
by factors such as speed, traffic conditions, and any operational 
delays specific to that transport mode. Additionally, 
/4�5#6_$
�0��� , �� → �"� represents the waiting time at the 
transfer node ��  when switching from mode ��  to mode �" . 
This waiting time may include the duration it takes for 
passengers to disembark, locate their next mode of transport, 
and wait for its arrival. 

3) Cost 

This criterion evaluates the monetary expenses associated 
with the journey, encompassing ticket prices, transfer fees, and 
any additional charges that may apply.  

9:#$��� � ∑ ;:#$��� , �' , ����(),(*,+,�∈-   (4) 

where ��� , �' , ��� is the travel cost between nodes ��  and �' 
when using mode �� . This cost encompasses all associated 
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expenses for that segment of the journey, including ticket 
prices, fuel costs, surcharges, and any applicable fees specific 
to mode ��. 

III. PROPOSED APPROACH 

The proposed approach is based on OMF. This approach is 
based on mathematical morphology transformations, mostly 
employed in the field of image processing. The basic element 
called erosion transformation is employed to explore the search 
space and locate the local optimum close to the structuring 
element, also called the morphological filter. Many parallel 
filters are used, which ensures that the system searches more 
intensely. To diversify the search, a method has also been 
included that prevents blockage at the level of local optimums 
and allows the examination of previously unexplored places. 

A. The General OMF 

The general OMF algorithm is given as follows. 

initialize (NF, NN, FS, and ε) 

for i = 0 to NF do 

  Place randomly each filter Fi in the   

  space search then assign it a filter   

  size FSi 

end for 

repeat 

  for i = 0 to NF do  

    Calculate neighbors of Fi 

    if there is a local optimum then 

      move Fi to the local optimum  

    else   

      Reduce FSi 

    end If 

  end For 

until (∑ �<��� = ε?@
�A� ) 

return the global optimum 

 
A set of NF-size filters is placed within a search space, 

where each filter's neighboring filters (NN) are then identified. 
If a neighboring filter shows an improvement in the objective 
function, it replaces the current filter. If no improvement is 
found, the current filter's size (FS) is decreased, and 
neighboring filters are recalculated. This cycle continues until 
the combined filter sizes reach a small threshold value ε, 
approaching zero. 

B. Optimization with Morphological Filters for Multimodal 
Transportation (OMF-MT) 

The main contribution of this study is the application of the 
OMF method to the multimodal shortest path problem, called 
OMF-MT. Figure 2 shows the detailed steps of the proposed 
algorithm. An additional parameter is introduced, the stopping 
criterion for the optimization process, which replaces the Filter 
Size (FS) and the threshold value ε in the general OMF. 
Additionally, two neighborhood strategies are proposed: one 
focused on depth and the other on width. The primary goal is to 
enable the OMF to identify a collection of nondominated 
solutions that effectively approximate the Pareto front. Filters 
and neighbors in the OMF-MT represent a potential path within 

the multimodal transportation network from the source SN to 
the destination DN. 

 
Fig. 2.  The OMF-MT steps. 

The algorithm begins with an initial graph �, a start node 
��, and a destination node ��. The objective is to find a set of 
non-dominated solutions NonDom between SN and DN. After 
initializing parameters, including NF, NN, IT, and R, the 
algorithm creates NF filters Fi. Then, it enters a loop that 
continues until the iteration IT count reaches zero. Within each 
iteration, the algorithm explores neighboring paths by iterating 
over NN. For each neighbor, a random value determines 
whether a width-based or depth-based neighboring strategy is 
used. The algorithm then evaluates whether the newly 
calculated neighbor Vj dominates the current best path Fi. If so, 
Fi is updated to Vj and it is added to NonDom. This process 
iteratively refines the path by balancing exploration and 
exploitation through a mix of width-based and depth-based 
strategies. The loop terminates when the specified number of 
iterations is completed, and the final set of non-dominated 
solutions NonDom is returned. The algorithm leverages 
stochastic elements to effectively navigate the search space, 
aiming to identify an optimal path that dominates the initial one 
based on predefined criteria. This approach not only enhances 
the adaptability of the algorithm but also promotes the 
discovery of diverse solutions that meet the varying preferences 
of users in a multimodal transportation context. The details of 
the proposed parameters are presented in the following 
sections, providing comprehensive insight into their definitions 
and applications in the algorithm. 
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1) IT (Iterations Number)  

This parameter serves as the stopping condition for the 
optimization process. 

2) Neighborhood Strategies  

Two neighborhood strategies are proposed as follows: 

 Depth Neighborhood Strategy: This method preserves the 
filter's path while adjusting transportation modes along the 
edges to identify new neighbors. For instance, in Figure 3, 
the path from node 1 to node 6 originally utilized Bus, Bus, 
and Tram. After applying the depth neighborhood system, 
the path remains structurally the same, but the modes are 
modified to Taxi, Bus, and Bus, thus enhancing flexibility 
and potentially improving travel efficiency. 

 

 
(a) (b) 

Fig. 3.  Neighborhood in depth. 

 Width Neighborhood Strategy: In this system, new random 
paths are generated while maintaining the same starting and 
destination nodes. Figure 4 illustrates this neighborhood 
system. In case (a), the path from node 1 to node 6 passes 
through nodes 2 and 4. After applying the width 
neighborhood system in (b), a new path is calculated that 
crosses nodes 2 and 5, showcasing the system's ability to 
explore alternative routing options. 

 

 
(a) (b) 

Fig. 4.  Neighborhood in width. 

3) Probability R 

This parameter determines which neighborhood calculation 
method to apply at each iteration, allowing for a dynamic 
preference between width and depth approaches based on the 
current optimization context. 

4) Dominance Relationship 

The proposed OFM uses the dominance relationship 
described by the following formula. 

∀ C ∈ D, C-� E C-� �5& ∃ G ∈ D, G-� H G-� (5) 

where C-�  and C-�  are a given criterion in the set of criteria 
D � I�, /, 9J, corresponding respectively to two paths �� and 
��. According to the formula �� dominates ��.  

IV. EXPERIMENTS AND RESULTS 

The proposed method was implemented on a PC with an i7 
processor at 2.7 GHz and 8 GB RAM using a routing simulator 
that provides a multimodal transportation network model and 
allowed the calculation and visualization of the optimal path 
between two nodes. Two experiments are presented: 

 Comparison Experiment: A performance comparison was 
performed between the proposed OMF-MT, Genetic 
Algorithm (GA), and NSGA-II algorithms. 

 Real-World Application: The second experiment involved 
applying the OMF-MT to a real-life scenario using the 
platform provided by Transports en Commun Lyonnais 
(TCL) [21]. 

A. Comparison Experiment 

The proposed OMF-MT method was compared with GA 
and NSGAII, with tests on three randomly generated graph 
instances, as presented in Table I. 

TABLE I.  INSTANCES OF USED GRAPHS FOR 
COMPARISON 

Graph Nodes Edges 

G1 120 420 
G2 960 3660 
G3 2600 10100 

 
The performance of each approach was evaluated using 

computation time and proximity (Prox) based on the Euclidean 
distance in the Pareto front to the ideal point in the search 
space. Figure 5 shows the proposed proximity concept. 

 

 
Fig. 5.  Proximity demonstration. 

Equations (6) and (7) indicate how to obtain the criteria of 
the ideal point and the calculation of proximity �4:K�C�, �� 
between the ideal point and a given solution, respectively. The 
solution with the smallest proximity to the ideal point is the 
best. 

CL- � �
5�C-�� ∈ ��    (6) 

�4:K�C�, �� � M∑ �CL- N C-��
L∈O   (7) 

where CL-  and C-  are the given criteria in the set of criteria 
D � I�, /, 9J, corresponding respectively to the paths C� and 
� in the set of non-dominated solutions ��. 
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The GA and NSGAII parameters were as follows: 
population size = 100, generations number = 50, crossover rate 
= 0.9, and mutation rate = 0.1. The parameters of the OMF-MT 
algorithm included FN = 3, NN = 5, IT = 50, and probability R 
= 0.7. For each test, a random path calculation is requested. 
After that, the ideal point is calculated and the execution of 
each algorithm is applied. Table II and Figures 6-10 show the 
simulation results. 

TABLE II.  COMPARISON RESULTS 

Network Approach D T C Prox Ex (ms) 

G1 

IP 8.7 14.69 40 - - 

GA 9 14.8 40 0.87 136 
NSGA-II 9 14.75 40 0.67 225 
OFM-MT 9 14.86 40 1.07 96 

G2 

IP 29.34 45.27 60 - - 

GA 32 48.16 80 21.48 739 
NSGA-II 29,6 45.85 60 3.11 1019 
OFM-MT 32 48.16 80 21.48 329 

G3 

IP 51.22 76.94 160 - - 

GA 58 86.09 200 44.33 1358 
NSGA-II 53 78.48 160 6.72 2735 
OFM-MT 56 85.73 200 43.89 640 

 

 
Fig. 6.  Results obtained for the distance criterion. 

 
Fig. 7.  Results obtained for the time criterion. 

The findings reveal that NSGAII demonstrated a modest 
advantage over both the proposed OMF-MT and GA in terms 
of solution quality. Specifically, NSGAII achieved results that 
were nearly aligned with the ideal point, indicating greater 
precision in meeting optimization objectives. In contrast, the 
OMF-MT delivered solutions that closely matched those 

obtained with the GA and NSGAII, suggesting a comparable 
level of performance in terms of accuracy. However, a 
noteworthy benefit of OMF-MT is its significant reduction in 
computation time compared to both NSGAII and GA. This 
time efficiency makes OMF-MT a valuable alternative when 
computational resources or processing time are constrained. 
Although NSGAII may offer slightly better solution quality, 
fast execution with OMF-MT can be advantageous in some 
decision-making scenarios. Therefore, OMF-MT stands out as 
a viable compromise between solution quality and 
computational efficiency, achieving nearly comparable results 
to NSGAII while offering substantial time savings. 

 

 
Fig. 8.  Results obtained for the cost criterion. 

 

Fig. 9.  Proximity metric performance results. 

 
Fig. 10.  Execution time performance results. 
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An additional experiment was carried out to evaluate the 
convergence behavior of the algorithms, focusing on how 
closely they approach the ideal point as the number of 
iterations increases. Experiments were performed using the G3 
network. Figure 11 shows the results obtained. The results 
indicate that the proposed OMF-MT approach achieved faster 
convergence compared to NSGAII and GA. Although 
population-based algorithms such as GA and NSGAII generate 
new sets of solutions at each iteration and utilize crossover and 
mutation operators to enhance these solutions, this process 
often leads to a divergence of solutions throughout successive 
iterations. The continuous search for better solutions by 
exploring a wide solution space tends to slow the convergence 
rate of these algorithms. In contrast, OMF-MT leverages a 
local search mechanism combined with the proposed width and 
depth neighborhood systems, allowing it to rapidly refine and 
improve solutions. Integration of neighborhood systems 
enables OMF-MT to systematically explore solution variations 
while maintaining a tighter convergence path, which minimizes 
the divergence often seen with population-based methods. 
Consequently, OMF-MT achieves faster convergence.  

 

 

Fig. 11.  Convergence analysis of approaches across iterations. 

B. Real-World Application 

This experiment involved the Lyon City network in France. 
The TCL platform [21] serves as the official source for 
multimodal transport routes in the Lyon metropolitan area, 
offering comprehensive travel information and route planning 
across various transportation modes, consisting of four metro 
lines, seven tram lines, more than 100 bus and trolleybus 
routes, and two funicular lines. It serves 72 municipalities, 
including 58 in the Lyon metropolitan area, covering a 
geographical area of 746 km² and serving a population of more 
than 1.3 million inhabitants. Table III presents the data for each 
mode of transport in the network, providing detailed 
information specific to the number of stops and edges of each 
transportation mode. 

TABLE III.  TCL NETWORK 

Transportation mode Stops Edges 

Tram 70 162 
Metro 40 72 
Bus 1460 2340 

Funicular 4 4 

 
This real-life implementation scenario considered the large 

lines served by metros, trams, and buses. The map is provided 
by TCL [22]. The test involves a travel request from the Cuire 
station to the Meyzieu Les Panettes station. OMF-MT was 
applied multiple times to generate the best optimal path. Figure 
12 presents the visualization of the result path and the criteria 
values. It is important to note that the paths obtained in this 
study are consistent with the routes provided by the TCL 
transport service platform. Therefore, the alignment between 
the obtained paths and those of the TCL platform validates the 
accuracy and reliability of the multimodal transport network 
representation and the proposed OMF-MT. 

 

 
Fig. 12.  Best optimal path. 

V. DISCUSSION 

The OMF method introduces an innovative approach, 
inspired by image processing techniques, to address the 

complex challenges of multimodal transport network 
optimization. Unlike traditional metaheuristic algorithms, 
which are computationally intensive and face scalability issues 
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when applied to large real-world networks, OMF leverages a 
local search mechanism and an innovative neighborhood 
system to significantly enhance computational efficiency. 
Experiments conducted on synthetic graph models and a real-
world multimodal transport network in Lyon, France, showed 
that OMF achieved competitive solution quality comparable to 
both GA and NSGA-II. In particular, OMF outperformed these 
algorithms in terms of computation time, offering substantial 
time savings without compromising the accuracy of the 
solutions. This makes OMF an attractive alternative when time 
efficiency is a critical factor, such as in real-time transportation 
planning or large-scale urban mobility optimization. The study 
also highlights several promising avenues for extending OMF 
to other domains. For example, the principles behind OMF's 
local search and neighborhood system could be adapted to 
optimize complex network problems in fields such as logistics, 
supply chain management, and even telecommunications. By 
providing a flexible framework that balances exploration and 
exploitation within solution spaces, OMF has the potential to 
advance both theoretical research in optimization and its 
practical applications across a range of industries. The OMF 
method not only provides a fresh perspective on solving 
multimodal transport optimization problems but also presents a 
promising tool to address large-scale optimization tasks in real-
world settings. Its ability to achieve competitive solution 
quality while offering significant computational savings 
positions OMF as a robust alternative to traditional methods, 
especially in cases where fast and reliable decision-making is 
critical. 

VI. CONCLUSION 

This study addressed the challenges inherent in optimizing 
multimodal transportation networks by introducing OMF as a 
novel approach to solving the multicriteria shortest path 
problem. This study highlighted the need to integrate various 
transportation modes to improve efficiency, convenience, and 
user satisfaction in complex urban environments. Through 
rigorous evaluation using both simulated network models and 
actual data from the city of Lyon, it was shown that OMF 
offers significant advantages over traditional optimization 
methods, particularly in terms of solution quality and 
computational efficiency. By accommodating multiple criteria 
such as distance, total travel time, and monetary cost, the 
proposed approach provides a comprehensive framework for 
optimizing itineraries tailored to the diverse needs of travelers. 
Future research should focus on further refining the OMF 
algorithm and exploring its applicability to dynamic networks, 
where real-time data can significantly influence transportation 
choices. Additionally, integrating machine learning techniques 
to predict traveler preferences and behaviors could enhance the 
adaptability of the proposed approach, providing even more 
effective solutions in the face of evolving urban challenges. 

REFERENCES 

[1] L. Alessandretti, L. G. Natera Orozco, M. Saberi, M. Szell, and F. 
Battiston, "Multimodal urban mobility and multilayer transport 
networks," Environment and Planning B: Urban Analytics and City 
Science, vol. 50, no. 8, pp. 2038–2070, Oct. 2023, https://doi.org/ 
10.1177/23998083221108190. 

[2] Y. Zhou, C. Cao, and Z. Feng, "Optimization of Multimodal Discrete 
Network Design Problems Based on Super Networks," Applied Sciences, 

vol. 11, no. 21, Jan. 2021, Art. no. 10143, https://doi.org/10.3390/ 
app112110143. 

[3] P. Modesti and A. Sciomachen, "A utility measure for finding 
multiobjective shortest paths in urban multimodal transportation 
networks1," European Journal of Operational Research, vol. 111, no. 3, 
pp. 495–508, Dec. 1998, https://doi.org/10.1016/S0377-2217(97)00376-
7. 

[4] T. Y. Ma, "An A* Label-setting Algorithm for Multimodal Resource 
Constrained Shortest Path Problem," Procedia - Social and Behavioral 
Sciences, vol. 111, pp. 330–339, Feb. 2014, https://doi.org/10.1016/ 
j.sbspro.2014.01.066. 

[5] Y. Luo, Y. Zhang, J. Huang, and H. Yang, "Multi-route planning of 
multimodal transportation for oversize and heavyweight cargo based on 
reconstruction," Computers & Operations Research, vol. 128, Apr. 
2021, Art. no. 105172, https://doi.org/10.1016/j.cor.2020.105172. 

[6] M. Bielli, A. Boulmakoul, and H. Mouncif, "Object modeling and path 
computation for multimodal travel systems," European Journal of 
Operational Research, vol. 175, no. 3, pp. 1705–1730, Dec. 2006, 
https://doi.org/10.1016/j.ejor.2005.02.036. 

[7] M. G. Battista, M. Lucertini, and B. Simeone, "Path Composition and 
Multiple Choice in a Bimodal Transportation Network. Volume 2: 
Modelling Transport Systems," presented at the World Transport 
Research. Proceedings of the 7th World Conference on Transport 
ResearchWorld Conference on Transport Research Society, 1996. 

[8] A. Idri, M. Oukarfi, A. Boulmakoul, K. Zeitouni, and A. Masri, "A new 
time-dependent shortest path algorithm for multimodal transportation 
network," Procedia Computer Science, vol. 109, pp. 692–697, Jan. 2017, 
https://doi.org/10.1016/j.procs.2017.05.379. 

[9] O. Dib, L. Moalic, M.-A. Manier, and A. Caminada, "An advanced GA–
VNS combination for multicriteria route planning in public transit 
networks," Expert Systems with Applications, vol. 72, pp. 67–82, Apr. 
2017, https://doi.org/10.1016/j.eswa.2016.12.009. 

[10] O. Dib, M. Dib, and A. Caminada, "Computing Multicriteria Shortest 
Paths in Stochastic Multimodal Networks Using a Memetic Algorithm," 
International Journal on Artificial Intelligence Tools, vol. 27, no. 07, 
Nov. 2018, Art. no. 1860012, https://doi.org/10.1142/ 
S0218213018600126. 

[11] H. Ayed, C. Galvez-Fernandez, Z. Habbas, and D. Khadraoui, "Solving 
time-dependent multimodal transport problems using a transfer graph 
model," Computers & Industrial Engineering, vol. 61, no. 2, pp. 391–
401, Sep. 2011, https://doi.org/10.1016/j.cie.2010.05.018. 

[12] R. Wang, K. Yang, L. Yang, and Z. Gao, "Modeling and optimization of 
a road–rail intermodal transport system under uncertain information," 
Engineering Applications of Artificial Intelligence, vol. 72, pp. 423–436, 
Jun. 2018, https://doi.org/10.1016/j.engappai.2018.04.022. 

[13] A. Abbassi, A. E. hilali Alaoui, and J. Boukachour, "Robust optimisation 
of the intermodal freight transport problem: Modeling and solving with 
an efficient hybrid approach," Journal of Computational Science, vol. 
30, pp. 127–142, Jan. 2019, https://doi.org/10.1016/ 
j.jocs.2018.12.001. 

[14] H. C. Yu and F. Lu, "A multi-modal route planning approach with an 
improved genetic algorithm," in Advances in Geo-Spatial Information 
Science, CRC Press, 2012. 

[15] H. Jafarzadeh, N. Moradinasab, and M. Elyasi, "An Enhanced Genetic 
Algorithm for the Generalized Traveling Salesman Problem," 
Engineering, Technology & Applied Science Research, vol. 7, no. 6, pp. 
2260–2265, Dec. 2017, https://doi.org/10.48084/etasr.1570. 

[16] H. Faroqi, "Multiobjective route finding in a multimode transportation 
network by NSGA-II," Journal of Engineering and Applied Science, vol. 
71, no. 1, Mar. 2024, Art. no. 81, https://doi.org/10.1186/s44147-024-
00417-7. 

[17] C. N. E. H. Khelifa and A. Belmadani, "New Approach for Continuous 
and Discrete Optimization: Optimization by Morphological Filters," in 
Heuristics for Optimization and Learning, F. Yalaoui, L. Amodeo, and 
E. G. Talbi, Eds. Springer International Publishing, 2021, pp. 425–440. 

[18] S. Zaoui and A. Belmadani, "Solving Engineering Optimization 
Problems Without Penalty," International Journal of Computational 



Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 19856-19864 19864  
 

www.etasr.com Kateb Hachemi Amar et al: Solving Multi-Criteria Shortest Path by Optimization with … 

 

Methods, vol. 18, no. 04, May 2021, Art. no. 2150007, https://doi.org/ 
10.1142/S0219876221500079. 

[19] S. Zaoui and A. Belmadani, "Solution of combined economic and 
emission dispatch problems of power systems without penalty," Applied 
Artificial Intelligence, vol. 36, no. 1, Dec. 2022, Art. no. 1976092, 
https://doi.org/10.1080/08839514.2021.1976092. 

[20] S. A. Arhin, A. Gatiba, M. Anderson, B. Manandhar, and M. Ribbisso, 
"Acceptable Wait Time Models at Transit Bus Stops," Engineering, 
Technology & Applied Science Research, vol. 9, no. 4, pp. 4574–4580, 
Aug. 2019, https://doi.org/10.48084/etasr.2966. 

[21] "TCL - Transports en commun à Lyon : métro, tramway, funiculaire et 
bus." https://www.tcl.fr/. 

[22] "Plans du réseau | TCL." https://www.tcl.fr/plans-du-reseau. 

 
 


