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ABSTRACT 

The dynamic and constantly evolving landscape of cyber threats demands innovative methods capable of 

adapting to the complex relationships and structures inherent in network data. Traditional methods often 

struggle to adequately capture the intricacies of dynamic networks, especially in terms of evolving 

temporal dynamics and multiscale dependencies. The proposed solution, Enhanced V-GCN, combines the 

structural insights of Graph Convolutional Networks (GCNs) with the temporal modeling capabilities of 

Variational Autoencoders (VAEs), further augmented by multiscale convolutions and attention 

mechanisms. Multiscale convolutions enable the model to aggregate information across broader 

neighborhood ranges, while attention mechanisms prioritize the most critical nodes and edges, dynamically 

adapting to changes within the network. This enhanced approach allows V-GCN to effectively capture 

both nodal and structural patterns, significantly improving performance in node classification tasks. The 

Enhanced V-GCN model has demonstrated superior performance in node classification, outperforming 

baseline models with an accuracy of 98.00%, precision of 97.93%, recall of 98%, and an F1-score of 

97.92%, indicating robust classification capabilities and exceptional generalization across diverse network 

structures. 

Keywords-anomaly detection; dynamic networks; deep learning; graph neural networks; node classification 
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I. INTRODUCTION  

A remarkable surge has been observed in the utilization of 
graph-based methods across various domains, due to 
significant advancements in information and communication 
technologies. Graph data, found in applications such as social 
networks, communication networks, the Internet of Things 
(IoTs), transportation networks, biological networks, and 
human disease networks, harbors substantial information and 
manifests diverse characteristics. Such characteristics include 
node or edge attributes that contain the properties of entities or 
connections. Moreover, the nature of graph data in such 
applications is dynamic, constantly expanding, and increasingly 
complex. The complexity arises from the multidimensional 
interactions and the evolving nature of the graphs, necessitating 
advanced analytical approaches to capture both local and global 
structural properties efficiently. 

At the same time, computing systems have undergone rapid 
evolution and have transitioned to large-scale, collaborative, 
and distributed frameworks. This paradigm shift has been 
facilitated by the introduction of various computing principles 
such as cloud computing, IoT, edge computing, and federated 
learning [1]. Effective exploration of extensive graph data in 
future-generation computing systems requires careful 
consideration of crucial aspects, including the efficacy of graph 
learning [2], scalability of large-scale computations, and 
preservation of privacy within federated computing settings 
involving multisource graphs. Additionally, the management of 
graph dynamics in distributed environments poses significant 
challenges. Researchers have recognized the demand for 
innovative graph learning theories, specialized platforms 
tailored to accommodate large-scale graphs, and advanced 
techniques to process graph-based data. Consequently, several 
noteworthy research topics have emerged, encompassing 
knowledge graph reasoning [1], graph self-supervised learning 
[3], temporal graph modeling [4], and graph embedding 
techniques [5, 6]. Moreover, applications such as graph-based 
anomaly detection [7, 8], community detection [9], social 
recommendation systems, and social influence analytics have 
received significant attention within the research community. 

This study presents enhancements to the Variational Graph 
Convolutional Network (V-GCN) [10] model by integrating 
multiscale convolutions and attention mechanisms. The 
enhancements aim to improve the model's ability to adapt to 
and accurately analyze dynamic and complex network 
structures, offering superior performance in node classification 
tasks and a deeper understanding of graph dynamics. 

A. Background and Motivation 

Graph representation learning and anomaly detection in 
complex graphs pose significant challenges due to the diverse 
network types encountered in real-world scenarios [11]. Most 
of the existing research focuses on simple graphs, disregarding 
the complexity introduced by heterogeneous graphs with 
multiple node types [12, 13], spatiotemporal graphs evolving 
over time [14], and hypergraphs with relations extending 
beyond pairwise relationships [15]. Research aims to address 
these challenges by developing novel anomaly detection and 
prediction methods, specifically tailored for complex graphs 

[16]. By incorporating attribute and structure information, as 
well as modeling the temporal characteristics of dynamic 
networks, this study aims to improve the accuracy and 
applicability of anomaly detection techniques [17-19]. 

In the contemporary landscape of cybersecurity, the 
paradigm has shifted toward the analysis of dynamic network 
traffic for the early detection and prevention of malicious 
activities. The ubiquitous and ever-evolving nature of cyber 
threats demands innovative approaches that can adapt to the 
dynamic relationships and structures within network data [20]. 
Traditional methods often fail to capture the complexities of 
dynamic networks, particularly in the context of evolving cyber 
threats [21]. This necessitates a paradigm shift towards 
advanced techniques that can harness the temporal 
dependencies and evolving patterns inherent in dynamic 
network traffic. GCNs [22] have demonstrated unparalleled 
efficiency in modeling complex relationships within graph-
structured data. Their ability to capture complex dependencies 
among interconnected entities makes them particularly suitable 
for dynamic network traffic analysis. However, the temporal 
dimension of network data introduces an additional layer of 
complexity that traditional GCNs may not fully address. The 
temporal evolution of network structures, the emergence of 
new connections, and changes in node behaviors over time, as 
shown in Figure 1, require a more detailed approach. 

B. Dynamic Network Traffic Analysis 

Dynamic network traffic analysis plays a key role in 
modern cybersecurity, tasked with learning regular patterns and 
abnormalities among constantly evolving network interactions. 
Unlike its static counterpart, dynamic analysis investigates the 
temporal dimension, recognizing networks as dynamic entities 
that undergo constant evolution. This field is driven by the 
understanding that modern cyber threats are dynamic, 
constantly adapting, and exploiting vulnerabilities in complex 
ways. Thus, understanding the dynamics of network traffic is 
crucial to timely threat detection and the implementation of 
effective cybersecurity protocols. Dynamic network traffic 
analysis involves understanding complex relationships, 
dependencies, and behaviors that evolve within a network over 
time. This includes monitoring the establishment and 
termination of connections, identifying emerging patterns, and 
detecting anomalies indicative of potential security breaches 
[11]. Traditional methods often face challenges to keep up with 
the dynamic characteristics of networks, demanding novel 
approaches capable of adapting to changing structures and 
behaviors [16]. 

Graph-based representations offer a robust framework for 
analyzing dynamic networks. Let � = (�, �) represent a graph, 
with � the node set denoting network entities and � the edge 
set indicating relationships between them. GCNs have emerged 
as a highly effective approach within this framework, 
leveraging the graph structure to learn feature representations 
of nodes, facilitating the modeling of complex relationships in 
a network. The temporal dynamics of a dynamic network, 
illustrated through a series of snapshots in the DynKDD dataset 
[23], are shown in the dynamic network plot in Figure 1. Each 
frame represents a distinct snapshot in time, employing a 3D 
adjacency tensor �	
�   to capture the temporal dynamics. 
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(���) = � ���� ��  ������
� 
(�)�(�) �  (1) 

where 
(�) denotes the node feature matrix in layer �, �� = � +
� represents the adjacency matrix of the graph with added self-

connections, �  signifies the degree matrix of �� , and �(�) 

denotes the weight matrix in layer �, with � being the activation 
function. These plots illustrate the progression of connections 
or interactions over time within a dynamic network, providing 
insights into the evolving structural dynamics of the graph over 
time. 

 

 

Fig. 1.  Dynamic relationships among nodes and edges at different time intervals. 

However, the temporal dimension adds an extra level of 
complexity. Effective dynamic network traffic analysis 
demands methods that not only can capture the inherent 
structural dependencies within the network but also can learn 
the temporal evolution of these structures [4], as illustrated in: 


�
(���) = �(���

��
�������

��
�
�

(�)��
(�))   (2) 

In such scenarios, advanced models such as VAEs play a 
crucial role. VAEs introduce a probabilistic aspect, enabling 
the representation of uncertainty in the temporal 
transformations of network graphs. The dynamic network 
traffic analysis process can be formalized using VAEs, where 
the latent variables � are regarded as random variables with a 
prior distribution �(�). The encoding process is encapsulated 

by the variational distribution  !(�|#) , which estimates the 

true and complex posterior distribution �(�|#). The objective 
of a VAE is to reduce the Kullback-Leibler (KL) divergence 

between  !(�|#) and �(�) stated as: 

$%( !(�|#)||�(�)) =  

�
& ∑ (�(

& + )(
& − �+,(�(

&) − 1).
(/�   (3) 

where $ denotes the dimensionality of the latent space, )(  and 

�(  represent the mean and standard deviation of the 0th
 element 

of the variational distribution  !(�|#) , and the summation 

includes all dimensions of the latent space [24]. Integration of 
GCNs and VAEs in the proposed V-GCN model marks a 
notable development in dynamic network traffic analysis. The 

V-GCN aims to seamlessly incorporate structural information 
from GCNs with the probabilistic temporal modeling 
capabilities of VAEs. This integration aims to enhance the 
accuracy of node classification, a task that is crucial in 
identifying potential threats within dynamic networks. 
Dynamic network traffic analysis presents a comprehensive 
challenge that requires a thorough understanding of evolving 
network structures. By leveraging graph-based models, 
particularly through the integration of GCNs and VAEs, new 
possibilities for comprehensive and effective analysis are 
revealed, significantly improving the reliability of 
cybersecurity frameworks against evolving cyber threats. 

C. Existing Techniques for Dynamic Traffic Analysis 

Dynamic network traffic analysis has witnessed substantial 
development, driven by the critical requirement to understand 
and respond to evolving cyber threats. This section presents an 
extensive review of existing techniques, ranging from 
conventional to state-of-the-art methods.  

1) Traditional Approaches 

Conventional approaches to dynamic network analysis 
often rely on heuristic methods [25, 26], rule-based systems 
[27, 28], and statistical measures [29]. Time-series analysis [30, 
31], including techniques such as moving averages and 
anomaly detection based on predefined thresholds, serves as a 
fundamental tool for detecting deviations from expected 
patterns [32, 33]. Although these methods demonstrate 
effectiveness in certain contexts, their limitations become 
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apparent when confronting rapidly evolving and sophisticated 
cyber threats. 

2) Graph-based Approaches 

In recent years, there has been a notable shift toward graph-
based methods, harnessing the intrinsic structure of network 
data. Graph-based models, such as Graph Neural Networks 
(GNNs) [34], have proven effective in capturing complex 
relationships within dynamic networks. GNNs, including 
GCNs [22], have been employed in node classification, 
demonstrating the potential to adapt to evolving network 
structures. 

a) Graph Neural Networks (GNNs) 

GNNs have been utilized for node classification [35, 36], 
learning the embedding of each node based on its surrounding 
neighborhood. GNNs are specialized neural network models 
designed to work with graph-structured data. A graph is 
constructed based on predefined relationships within the data, 
with nodes and edges assigned attributes or features 
represented as real-valued vectors. Such feature vectors serve 
as input for GNNs, which perform a feature aggregation step. 
During this process, each node collects information from its 
neighboring nodes, guided by the graph structure. GNNs learn 
patterns of similarity or dissimilarity among node features by 
leveraging this feature aggregation, enabling them to address 
various prediction tasks. With advancements in the field and 
the increasing availability of computational resources and 
datasets, GNNs have been applied to a wide range of problems, 
including node classification, community detection, and other 
graph-based learning applications. 

b) Graph Convolutional Networks (GCNs) 

GCNs extend the concept of neural networks to graph-
structured data [22]. GCNs introduce the fundamental 
operation of graph convolution, distinct from traditional 
convolutions in the Euclidean space. In the context of graphs, 
each node is characterized by a feature vector, and the graph 
convolution operation is designed to gather features from a 
node's local neighborhood. The propagation rule across layers 

in a GCN is shown in (1). The multiplication with ��� ��  ������
� 

facilitates the computation of a weighted average of neighbor 
features, thereby integrating both the graph structure and node 
features into the learning process.  

However, the spectral formulation of the graph convolution 
operation in GCNs relies on the eigen-decomposition of the 
graph Laplacian, which may pose computational challenges for 
large graphs. To mitigate this, GCNs employ approximations 
of spectral convolutions using a localized first-order 
approximation approach. GCNs have exhibited success across 
a range of tasks, including node classification, showing their 
adaptability and efficiency in capturing dependencies within 
graph-structured data. The adaptation of GCNs to address 
dynamic and larger graphs continues to be a promising research 
field, with recent progress emphasizing scalability and 
temporal dynamics. 

c) Variational Graph Autoencoders (VGAEs) 

VGAEs emerge as a powerful tool for learning 
representations of nodes in a graph that evolves over time [37]. 

VGAEs leverage the inherent structure and dynamics of the 
graph to capture the complex relationships between nodes and 
their evolving structure. VGAEs extend traditional autoencoder 
architectures to graphs by learning low-dimensional 
representations (node embeddings) that encode both the 
structural and dynamic properties of the graph. The encoder 
function  (1|2, �)  maps each node 2(  and the adjacency 
matrix � to a distribution over latent variables �( capturing the 
latent structure of the graph. This distribution is assumed to 

follow a Gaussian distribution, 3()( , �(
&)  where )(  and �(

& 
represent the mean and variance of the latent representation for 
node 2( . Additionally, the decoder function �(�|1) 
reconstructs the adjacency matrix � based on the learned node 
embeddings 1 , aiming to capture the underlying graph 
topology. VGAEs are trained by maximizing the Evidence 
Lower Bound Objective (ELBO), which balances the 
reconstruction loss and the KL-divergence between the learned 
latent distribution and a prior distribution �(1) , effectively 
guiding the model to learn meaningful and generalizable node 
representations that adapt to the dynamic nature of the graph. 
Overall, VGAEs offer an approach to capture temporal 
dynamics in dynamic graphs, enabling effective node 
classification tasks in evolving network structures. 

D. Limitations of Current Models 

Modern graph-based learning approaches, especially those 
utilized for analyzing dynamic networks, demonstrate 
significant limitations in capturing temporal changes. Although 
static graph models, such as GCNs and their variants, have 
proven effective in processing graph-structured data, their 
fundamental architecture lacks the temporal aspect required for 
studying networks that undergo temporal evolution [11, 21]. 

1) Static Nature of GCNs 

Unlike dynamic graphs, where the relationships between 
nodes change over time, conventional GCNs operate on fixed 
graph structures and are unable to capture temporal variations 
in network topology. This static nature of GCNs restricts their 
applicability in scenarios where the underlying graph 
undergoes dynamic changes. The lack of a temporal dimension 
implies that evolutions occurring over time are not inherently 
taken into account. 

2) Challenges in Temporal Variability 

The primary obstacles to modeling temporal variability 
involve addressing several fundamental challenges. First, 
capturing temporal dependencies is essential, as it outlines how 
the current state of a network at any given time relies on its 
preceding states [38]. Second, accommodating variable time 
scales is crucial, given that dynamic networks often exhibit 
diverse dynamics operating on distinct time scales, e.g., from 
frequent changes in communication networks to more gradual 
shifts in social networks [39]. Therefore, models must have the 
flexibility to adapt to these varying scales for accurate analysis. 
Third, non-stationarity presents another significant challenge, 
as many dynamic networks demonstrate behaviors where their 
statistical properties evolve over time. This phenomenon poses 
a notable challenge for models built on the assumption of 
stationary distributions [40]. Although existing models 
efficiently handle learning from static graph structures, their 
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efficacy in dynamic scenarios, where temporal variability plays 
a pivotal role, remains limited. The future progression of 
dynamic network analysis relies on developing models that can 
efficiently capture, analyze, and predict the temporal evolution 
of networks. Although advances in temporal graph networks 
and recurrent neural architectures offer promise, further 
research is essential to fully address these complex challenges. 

E. Contributions 

This study introduces a novel enhancement to V-GCN by 
incorporating multiscale convolutions and attention 
mechanisms to address the challenges associated with dynamic 
graph analysis. Integration of multiscale graph convolutions 
enables the model to capture both local and global structural 
dependencies in dynamic networks. Attention mechanisms 
dynamically prioritize significant nodes and edges, thus 
ensuring adaptive and context-aware learning. The integration 
of GCNs with VAEs with multiscale convolutions and 
attention mechanisms introduces an enhanced probabilistic 
aspect, allowing the model to effectively represent uncertainty 
in evolving network graphs. This dual ability significantly 
improves performance in node classification tasks, particularly 
in dynamic and complex environments. The proposed 
enhanced V-GCN outperforms baseline models (e.g., GCN, 
GraphSAGE, GAT) across key metrics, including accuracy, 
precision, recall, and F1-score. The robust performance of the 
model highlights its ability to generalize effectively across 
diverse network structures. This approach addresses the 
limitations of static graph models, such as their inability to 
capture temporal variations and evolving patterns in network 
data. The model is specifically tailored for cybersecurity 
applications, offering robust anomaly detection in rapidly 
changing network environments. This study incorporates 
efficient training strategies and benchmarks on datasets such as 
DynKDD, demonstrating scalability and adaptability to real-
world scenarios. Beyond cybersecurity, the proposed model has 
potential applications in social network analysis, biological 
networks, and transportation systems, paving the way for future 
interdisciplinary advances in dynamic graph representation 
learning. 

II. METHODOLOGY 

The proposed enhanced V-GCN introduces advanced 
structural adaptations to traditional GCN methods by 
incorporating multiscale convolutions and attention 
mechanisms, as shown in Algorithm 1. Such innovations are 
designed to enhance the model's capabilities in handling 
dynamic and complex graph data, particularly in cybersecurity 
applications where rapid adaptation to evolving network 
conditions is crucial. 

Algorithm 1 Enhanced Variational Graph 

Convolutional Network (V-GCN) 

1:  Input: Graph � = (�, �),  
           Node features 2 ∈ 56×8 
2:  Output: Node representation 1 
3:  procedure 9:�;0<=>�?@+AB(2, �) 
4:    for C = 1 to $ do 
5:      �D ← �D 

6:      �D ← 	0>,(∑ (�D)(F)F  

7:      
(D) ← �(�D
��

� �D�D
��

�
�D) 
8:    end for 

9:    
 ← @+A=>;?A>;?(
(�), . . . , 
(D)) 
10:   return 
 
11: end procedure 

12: procedure �;;?A;0+A%>H?I(
, �) 
13:   1 ← 0 
14:   for 0 ∈ � do 
15:     for 
 ∈ 3(0) do 
16:       K(F ← LMN (OPQDRSPOT(QU[WXY||WXZ]))

∑ LMN (OPQDRSPOT(QU[WXY||WX\]))\∈](Y)
 

17:       �( ← �( + K(F�ℎF 
18:     end for 

19:   end for 

20:   return �(1) 
21: end procedure 

22: procedure ����A=+	?I(
, �) 
23:   ), �+,�& ← %0A?>I(
), %0A?>I(
) 
24:   Sample 1 ∼ 3(), ?#�(�+,�&)) 
25:   return 1 
26: end procedure 

27: procedure ��@3(�, 2) 
28:   Calculate �� ← � + � 
29:   
 ← 9:�;0<=>�?@+AB(2, ��) 
30:   
′ ←  �;;?A;0+A%>H?I(
, ��) 
31:   1 ← ����A=+	?I(
′) 
32:   Minimize: 

      % =  5?=+A%+aa(2, 1) + b$%(3 (), �&) ∥ 3 (0, �)) 
33: end procedure 

 

A. Multiscale Graph Convolutions 

Multiscale graph convolutions enable the model to capture 
information from a broad range of node neighborhoods, 
enhancing its ability to perceive both local and global graph 
structures. This is accomplished through the following steps. 

1) Extended Neighborhood Aggregation 

For each node, features from various hop distances are 
aggregated. This allows the model to capture a more 
comprehensive view of the graph topology as represented in: 


(���) = �d∑ �D
��/&�D�D

��/&
(�)�D
(�).

D/f g (4) 

where �D is the adjacency matrix considering k-hop neighbors, 

�D is the degree matrix corresponding to �D, 
(�) is the node 

feature matrix at layer �, �D
(�)

 is the weight matrix for the kth
 

neighborhood at layer � , and �  is the nonlinear activation 
function. 

2) Layer-Wise Feature Integration 

Features aggregated from different neighborhood scales are 
integrated to form a comprehensive feature representation for 
each node. This integration allows the network to learn which 
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scales of neighborhoods are most informative for specific tasks, 
such as node classification. 

B. Attention Mechanisms 

To prioritize the most informative parts of the graph 
dynamically, an attention mechanism is integrated into the 
graph convolution process. 

1) Node-Level Attention 

Each node calculates attention coefficients with its 
neighbors to prioritize which nodes should influence its next 
state more significantly. The attention coefficients are 
calculated using: 

K(F = Phi(OPQDRSPOT(QU[WXY||WXZ]))
∑ Phi(OPQDRSPOT(QU[WXY||WX\]))\∈](Y)

  (5) 

where >  is the learnable parameter vector of the attention 
mechanism, �  is the shared weight matrix, ℎ(  is the feature 
vector of node 0, || denotes concatenation, and 3(0) is the set 
of neighbors of node 0. 
2) Feature Transformation with Attention 

The node features are then transformed considering the 
calculated attention coefficients, enabling selective focus on 
more important nodes during feature aggregation as shown in: 

ℎ′( = �d∑ K(F�ℎFF∈j(() g   (6) 

where ℎ′(  is the updated feature vector of node 0. 
C. Integration of GCNs and VAEs 

The structural information captured by the enhanced GCN 
layers is complemented by the probabilistic modeling 
capabilities of VAEs, allowing for a robust feature 
representation that incorporates both deterministic and 
stochastic aspects. 

1) Variational Autoencoder Framework 

The VAE transforms the aggregated node features into a 
latent space where each node's features are represented as 
distributions, capturing the underlying uncertainty in the graph 
dynamics. The reparameterization trick is used to sample from 
such distributions, providing a way to perform backpropagation 
through stochastic nodes. 

2) KL Divergence Minimization 

The model minimizes the Kullback-Leibler divergence 
between the approximate posterior and the prior, enhancing the 
model's ability to generalize, as shown in: 

$% %+aa = ∑ $%( (�(|2)||�(�())j
(/�   (7) 

where  (�(|2)  is the variational posterior, �(�()  is the prior 
distribution, and 3 is the number of nodes in the graph.  

 

 

Fig. 2.  Deep learning workflow of an enhanced V-GCN with multiscale convolutions, attention, and VAE integration. 

D. Deep Learning Workflow 

Figure 2 illustrates a Fully Connected Neural Network 
(FCNN) that incorporates features of a V-GCN, specifically 
designed for tasks that involve graph-based data. It begins with 
the feature input layer, which represents the input features 
derived from graph nodes and edges, such as �A�:; #� , 
�A�:; #& , and �A�:; #k . These features enter the network, 
where they are sequentially transformed through layers that 
perform multiscale graph convolutions, attention mechanisms, 
and VAE integration. The first hidden layer is responsible for 
multiscale graph convolutions. This layer captures information 

from different levels of neighborhood relationships within the 
graph by aggregating features from various hops or distances 
around each node. This enables the model to consider both 
local and global contexts, enriching the feature representations 
with multi-hop neighborhood information. Each hidden node in 
this layer (H1-1, H1-2, H1-3, H1-4) processes the multiscale 
features. The second hidden layer applies attention mechanisms 
to dynamically weigh the significance of each node's 
neighbors. The attention mechanism calculates an attention 
coefficient for each neighbor connection, allowing the model to 
prioritize nodes based on their relevance. Selective focus helps 
the model capture critical relationships in the graph while 
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reducing the influence of less relevant nodes. The nodes in this 
layer (H2-1, H2-2, H2-3) reflect the attention-based feature 
transformation. The output layer performs the integration of 
GCNs and VAEs, creating a latent representation that combines 
graph-based features with the probabilistic characteristics of a 
VAE. This layer, represented by output node 1, encapsulates 
the final encoding, incorporating uncertainty and probabilistic 
information from the VAE to handle complex, noisy, or 
uncertain data. The latent representation can then be used for 
downstream tasks, such as classification or regression. 

III. EXPERIMENTAL EVALUATION 

The system was running on Ubuntu 22.04 LTS, which was 
chosen for its seamless integration of machine learning libraries 
and tools, facilitating experiments and model development. 
Jupyter Notebook was used, running on Python 3.11.5, for 
interactive computing, combining code execution with rich text 
and visualizations. This setup ensured compatibility with 
cutting-edge libraries and facilitated the implementation of the 
proposed system. Experiments were carried out using essential 
Python libraries, such as torch, torch_geometric, numpy, 
pandas, scikit-learn, and matplotlib. The primary dataset, 
DynKDD, is a dynamic adaptation of the NSL-KDD dataset, 
addressing its static nature by introducing temporal dynamics. 
Its division into training and test sets allows for comprehensive 
learning and evaluation. Each DynKDD record is timestamped, 
converting it into a sequence of time-ordered snapshots, 
capturing network interactions over time. PyTorch geometric 
data objects were instantiated from the data and the V-GCN 
model was initialized for training. Performance evaluation 
metrics ensured effectiveness and generalizability in real-world 
settings. 

A. Training and Validation 

The training and validation of the V-GCN exhibited a 
successful learning phase, represented by a consistent decrease 
in loss and a substantial increase in accuracy, as shown in 
Figure 3. The training and validation process progressed over 
100 epochs, with the learning trajectory recorded at each step. 
Initially, the model experienced a steep loss, indicating rapid 
learning, which tapered as the model began to converge to a 
stable state. The loss dropped from 3.1077 in the first epoch to 
0.0617 by the final, showing significant learning and model 
improvement. As the model trains, there is a notable and 
consistent increase in accuracy on both the training and testing 
datasets. The initial accuracy was relatively high at 0.6543 for 
training and 0.6604 for testing, indicating that the model was 
able to learn meaningful representations from the data right 
from the beginning. As the epochs progressed, the training 
accuracy showed a steady climb and ultimately plateaued at 
0.9842, indicating that the model maximized its learning from 
the training data. The validation accuracy corresponded to this 
trend closely, starting at 0.6604 and reaching 0.9819, a sign of 
excellent generalization. Throughout the training process, the 
V-GCN model demonstrated a strong ability to generalize from 
the training to the validation data, which is demonstrated by the 
narrow gap between training and testing accuracy (see Table I). 
This close alignment is indicative of a well-tuned model that 
manages to avoid overfitting while still capturing the 
complexities of the data. The increasing trend in validation 

accuracy up to the final epoch suggests that the model's 
predictions are reliable and can be trusted when applied to new, 
unseen data. 

TABLE I.  EPOCH-WISE V-GCN MODEL TRAINING AND 
VALIDATION PERFORMANCE 

Epoch Loss Train Acc. Test Acc. 

1 3.1077 0.6543 0.6604 

10 0.4783 0.9007 0.9015 

20 0.2594 0.9310 0.9300 

30 0.1960 0.9435 0.9460 

40 0.1565 0.9575 0.9583 

50 0.1293 0.9619 0.9628 

60 0.1112 0.9704 0.9701 

70 0.0955 0.9730 0.9718 

80 0.0820 0.9762 0.9768 

90 0.0704 0.9811 0.9799 

100 0.0617 0.9842 0.9819 
 

B. Performance Evaluation 

Accuracy, precision, recall, and F1 score were employed to 
evaluate the performance of the V-GCN model in node 
classification tasks, as they offer comprehensive insight into 
the model's ability to make correct predictions, capture true 
positive and false negative instances, and strike a balance 
between precision and recall. The training loss graph exhibited 
an initial sharp decrease followed by a tapering trend as the 
epochs progressed, indicating rapid error reduction initially, 
followed by slower fine-tuning as convergence approached. 
The training loss decreased from an initial value exceeding 
3.06 to approximately 0.059 over 100 epochs. Conversely, the 
training accuracy displayed a consistent increase, leveling off 
as it approached higher values, signifying improved correctness 
of model predictions with training. Starting around 76.95%, the 
training accuracy steadily increased to more than 98% after 100 
epochs. These trends suggest a progressive enhancement in the 
model's predictive accuracy on the training data, aligning with 
expectations in successful model training scenarios. The testing 
metrics revealed high performance, with an accuracy of 
98.01%, a precision of 97.93%, a recall of 98.01%, and an F1 
score of 97.94%. These results demonstrate the model's robust 
generalization capability, assuming that the test dataset 
adequately represents the true distribution. The model's 
performance on node classification can be considered highly 
satisfactory. Against common benchmarks in various fields, 
accuracy and F1 scores above 97% are generally indicative of a 
high-quality model. The lack of discrepancy between training 
and testing performance suggests that the model is not 
overfitting. The model achieved very high accuracy relatively 
quickly, which indicates that the features were highly 
informative and the model architecture is particularly well-
suited to this task. 

C. Comparative Analysis 

The comparative analysis of V-GCN with baseline models, 
such as GAT [41], GraphSAGE [42], and GCN [22], for node 
classification results exhibits a distinct performance difference 
as shown in Figure 4. The performance was evaluated over 100 
epochs and the key performance indicators were loss, training 
accuracy, final accuracy, precision, recall, and F1 score, as 
presented in Table II. 
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Fig. 3.  V-GCN training and validation curves. 

 

Fig. 4.  Loss reduction and accuracy. 

TABLE II.  COMPARISON OF NODE CLASSIFICATION RESULTS FOR V-GCN AGAINST BASELINE MODELS 

Model Training accuracy Accuracy Precision Recall F1 score 

GCN [22] 0.7243 0.7306 0.8167 0.7306 0.7274 

GraphSAGE [42] 0.7885 0.7900 0.7831 0.79000 0.7822 

GAT [41] 0.8916 0.8617 0.8628 0.8617 0.8605 

V-GCN 0.9840 0.9800 0.9793 0.9800 0.9792 

 
The GCN model achieved a final training accuracy of 

72.43% and a test accuracy of 73.06%, indicating a reasonably 
good fit with minimal overfitting, as evidenced by the narrow 
margin between training and testing accuracy. However, the 
loss at the end of training was relatively higher compared to 
other models, suggesting less efficient learning over epochs. 
Although precision was notably high at 81.67%, recall was 
equal to accuracy, implying correct predictions only 73.06% of 
the time for positive class instances. The F1 score, which 
balances precision and recall, was the lowest among the models 
at 72.74%, suggesting potential gaps in the capture of relevant 
graph data patterns. In comparison, GraphSAGE exhibited a 
slightly higher accuracy of 79.00% than GCN, with training 
accuracy closely mirroring the final accuracy, indicative of 
good generalization without overfitting. Despite its lower 
precision of 78.31%, GraphSAGE compensated with higher 

recall, resulting in a comparable F1 score of 78.22%, indicating 
its effectiveness in identifying relevant positive class instances. 
GAT demonstrated a substantial improvement over GCN and 
GraphSAGE, achieving an accuracy of 86.17% on the test set, 
highlighting the efficacy of the attention mechanism in learning 
graph representations. Its balanced precision and recall, both 
around 86%, led to an F1 score of 86.05%, indicating effective 
identification of relevant instances with minimal incorrect 
predictions. V-GCN outperformed all models, with the lowest 
loss and the highest training and test accuracies (98.40% and 
98.00%, respectively), reflecting highly effective learning. Its 
precision and recall, both nearly 98%, underscored its precision 
and robustness in classifying correct labels, while the highest 
F1 score of 97.92% highlighted its balanced performance. 
Despite the high training accuracy, similar test accuracy 
suggested an exceptional generalization without overfitting. 
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Fig. 5.  Comparative analysis of GAT and V-GCN for node classification. 

IV. LIMITATIONS AND FUTURE WORK 

Although the V-GCN model represents a notable advance 
in dynamic graph representation learning, it is subject to 
limitations regarding temporal granularity, dependency on data 
quality, and adaptability that must be addressed. Regarding 
temporal granularity, the model's effectiveness depends on its 
ability to capture and process temporal dynamics in graph data. 
However, its operation at a certain temporal resolution may 
lead to missing critical transient dynamics, necessitating 
methods for handling higher temporal granularity to capture 
rapid changes. The dependency on data quality is another 
challenge, as the model performance is heavily influenced by 
the quality of input data, emphasizing the importance of robust 
preprocessing and data cleaning techniques to mitigate issues 
arising from noisy or biased data. Additionally, the model's 
adaptability to new and evolving patterns in dynamic networks 
is crucial for its long-term applicability, requiring mechanisms 
such as online learning and transfer learning to facilitate quick 
adaptation without extensive retraining. Despite these 
limitations, the V-GCN model holds promise for cybersecurity 
applications and beyond, with potential applications in diverse 
fields such as social network analysis, biological network 
interpretation, and transportation networks, provided that it is 
customized to specific application requirements. 

V. CONCLUSION 

The V-GCN model represents a significant advance in the 
field of graph-based learning, particularly for dynamic 
networks that are characterized by evolving relationships and 
attributes over time. This study demonstrates that V-GCN not 
only addresses the inherent limitations observed in traditional 
GCNs by incorporating temporal dynamics through the 
integration of VAEs but also enhances the model's ability to 
handle complex, evolving data structures effectively. 
Throughout the experimental evaluation, V-GCN consistently 
exhibited superior performance in node classification compared 
to other prevalent models such as GAT, GraphSAGE, and 
traditional GCN. The model's capacity to maintain high 
accuracy, precision, recall, and F1 score underlines its 

robustness and effectiveness in handling node classification 
tasks within dynamically changing graphs. The introduction of 
a variational approach within the GCN framework allows for a 
probabilistic representation of node features, thereby 
introducing an element of uncertainty handling that is crucial 
for real-time and dynamic network environments. The training 
and validation phases highlighted the model's efficiency in 
learning from dynamic graph data, demonstrating a steady 
decrease in loss and an increase in accuracy over epochs. This 
indicates not only the model's ability to learn significant 
representations from the data but also its ability to generalize 
well on unseen data, a critical factor for practical applications. 
The V-GCN model stands out as a robust framework for 
dynamic network analysis, offering promising directions for 
future research and potential applications across various 
domains such as cybersecurity, social network analysis, and 
beyond. The model's ability to integrate structural and temporal 
information makes it a valuable tool for researchers and 
practitioners looking to gather deeper insights into the evolving 
patterns of complex networks. 
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