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ABSTRACT 

The deployment of deep learning models on resource-constrained embedded platforms presents significant 

challenges due to limited computational power, memory, and energy efficiency. To address this issue, this 

study proposes a novel quantization method tailored to accelerate object detection using a quantized 

version of the YOLOv5m model, called Q_YOLOv5m. This method reduces the model's computational 

complexity and memory footprint, allowing for faster inference and lower power consumption, making it 

ideal for real-time applications on embedded systems. This approach incorporates advanced weight and 

activation quantization techniques to balance performance with accuracy, dynamically adjusting precision 

based on hardware capabilities. The efficacy of Q_YOLOv5m was confirmed, exhibiting substantial 

enhancements in inference speed and a reduction in model size with negligible loss in object detection 

accuracy. The findings underscore the capability of Q_YOLOv5m for edge applications, including 

autonomous vehicles, intelligent surveillance, and IoT-based monitoring systems. 
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I. INTRODUCTION  

The expansion of edge computing and the Internet of 
Things (IoT) has significantly increased the demand for 
deploying deep learning models on embedded systems. Object 
detection, a core task in applications such as autonomous 
vehicles, smart surveillance, and industrial automation, requires 
real-time inference with minimal latency and high accuracy. 
Models such as the YOLO (You Only Look Once) family, 
particularly YOLOv5 [1], have gained prominence due to their 
ability to achieve a balance between speed and accuracy. 
Despite these advantages, even smaller models, such as 
YOLOv5m, pose significant computational and memory 
challenges when deployed on embedded platforms with 
constrained resources. Embedded platforms, which are 
typically powered by ARM-based processors, microcontrollers, 
or other low power devices, are limited in terms of processing 
power, memory, and energy consumption [2]. This makes it 
challenging to run standard deep learning models, which are 
often designed for high-performance GPUs or cloud-based 
infrastructures [3]. To address these limitations, model 
compression techniques have become essential [4]. Among 
them, quantization is one of the most effective methods for 
reducing computational complexity and memory requirements 
without sacrificing significant accuracy [5-6]. Quantization 
works by converting the 32-bit floating-point operations of a 
neural network into lower-precision operations, such as 8-bit 
integers [7]. This process reduces the memory footprint and 
allows faster computation by leveraging hardware-specific 
acceleration features [8]. However, applying quantization to 
object detection models, such as YOLOv5, introduces unique 
challenges. Object detection relies on precision for both 
classification and localization tasks, and naïve quantization can 
result in notable accuracy degradation, especially in detecting 
small or overlapping objects [9]. Therefore, careful balancing is 
required to optimize inference speed and memory usage 
without compromising the model's performance. 

This study proposes Q_YOLOv5m, a quantized version of 
the YOLOv5m model specifically designed for embedded 
platforms [10]. Q_YOLOv5m leverages advanced quantization 
techniques, including hybrid precision and hardware-aware 
quantization. Hybrid precision quantization dynamically 
adjusts the precision of the model's weights and activations 
based on the criticality of each layer to overall accuracy, 
ensuring that layers with greater influence on detection 
performance retain higher precision. Additionally, hardware-
aware quantization tailors the model for specific embedded 
platforms by taking advantage of available computational 
resources, such as low-precision arithmetic support on ARM 
processors [11]. The proposed method demonstrates significant 
improvements in inference speed, memory efficiency, and 
energy consumption, with only minimal impact on detection 
accuracy. By optimizing the quantization process, 
Q_YOLOv5m offers a practical solution for real-time object 
detection tasks on resource-constrained devices. The 
contributions of this study include: 

 Applying a novel quantization method to YOLOv5m, 
creating Q_YOLOv5m, optimized for embedded platforms. 

 A detailed analysis of the trade-offs between quantization 
precision and object detection accuracy. 

 Insights into the effectiveness of advanced quantization 
techniques, such as hybrid precision and hardware-aware 
quantization, for efficient embedded deployment. 

II. OVERVIEW OF QUANTIZATION TECHNIQUE 

As deep learning models continue to evolve, the demand 
for efficient model deployment in resource-constrained 
environments has led to the development of various 
compression and quantization techniques. These methods aim 
to reduce the size and complexity of neural networks while 
maintaining their accuracy, which is crucial for embedded 
system applications. This section provides an overview of the 
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two primary quantization approaches used in this study: 
Quantization-Aware Training (QAT) and Post-Training 
Quantization (PQT). 

A. Quantization-Aware Training (QAT) 

QAT incorporates quantization during the training process, 
allowing the model to learn to mitigate the negative impacts of 
reduced precision by simulating the effects of quantization in 
both the forward and backward passes of training. During this 
process, weights and activations are quantized to lower 
precision (e.g., 8 bits) while retaining the model's original 
floating-point representation, enabling adaptation to the 
quantization process [10]. The quantization operations, 
typically non-differentiable, are approximated to facilitate 
gradient-based optimization. Techniques such as straight-
through estimators allow gradients to flow through quantized 
layers effectively [11]. After the initial training phase, the 
model undergoes a fine-tuning process that further trains it with 
the applied quantization effects, refining its parameters, and 
improving its performance under quantized conditions [12]. 
QAT has been shown to deliver superior performance 
compared to other methods, as it enhances the model's 
robustness against quantization-induced errors, resulting in 
greater accuracy for tasks such as object detection [13]. 

B. Post-Training Quantization (PQT) 

PQT is a technique applied to pre-trained models, enabling 
quantization after the model has been trained, which is 
advantageous in scenarios where retraining is computationally 
expensive or infeasible. PQT can be implemented as static or 
dynamic quantization. Static quantization involves determining 
the scale and zero-point for quantization during a calibration 
phase, typically using a representative dataset [14], while 
dynamic quantization adjusts the quantization parameters at 
inference time based on the input data [15]. Additionally, PQT 
allows different quantization levels to be applied to various 
layers of the model based on their sensitivity to quantization 
errors, facilitating a more fine-grained optimization of the 
quantization process [16]. Although PQT may result in some 
loss of accuracy compared to QAT, it can still achieve 
satisfactory performance, especially when combined with 
techniques such as layer fusion and calibration [17]. This 
approach is particularly useful for deploying models in 
environments with limited training data or computational 
resources, allowing developers to utilize existing models while 
enhancing efficiency through quantization [18, 19]. 

III. PROPOSED APPROACH - Q_YOLOV5M 

This section outlines the quantization method implemented 
to adapt the YOLOv5m architecture for efficient deployment 
on embedded platforms, resulting in the Q_YOLOv5m model, 
as shown in Figure 1. The YOLOv5 architecture consists of 
two main components, the backbone and the PANet, each 
playing a pivotal role in the model's overall functionality. The 
backbone is primarily responsible for extracting rich feature 
representations from the input image. It consists of several 
BottleneckCSP (Cross Stage Partial) blocks, which utilize a 
unique approach to feature extraction. Each BottleneckCSP 
block is designed to enhance the flow of gradients during 
training, thereby improving the efficiency of the learning 

process [20]. This is achieved through residual connections, 
which allow the network to learn identity mappings, facilitating 
the training of deeper networks without encountering the 
vanishing gradient problem. The CSP blocks divide the input 
features into two paths: one that processes the features directly 
through convolutions and another that splits and merges the 
features, thereby promoting a more diverse set of learned 
representations. This design helps to retain critical information 
while also allowing the model to learn richer and more varied 
feature maps. Next, PANet (Path Aggregation Network) is 
integrated into the architecture to enhance the feature 
aggregation process. PANet builds on the outputs from the 
backbone by performing upsampling and concatenation of 
features across different scales. This multiscale feature 
integration is crucial for object detection, as it allows the model 
to maintain spatial hierarchies and capture features of varying 
sizes, which is essential for detecting objects of different 
dimensions. Specifically, PANet improves the information 
flow between different layers, thereby optimizing the feature 
maps before they reach the final detection head. This 
aggregation process is instrumental in refining the features, 
enabling the model to produce more accurate predictions. After 
feature extraction and aggregation, the final output layer 
generates predictions that include class scores, bounding box 
coordinates, and objectness scores for the detected objects. This 
end-to-end architecture design allows simultaneous predictions 
across multiple scales, making YOLOv5 particularly effective 
for real-time object detection applications. Overall, the 
integration of the backbone and PANet components into the 
YOLOv5 architecture exemplifies a well-thought-out design 
that balances efficiency, accuracy, and speed, paving the way 
for enhanced performance in various computer vision tasks.  

A key aspect of this method is the quantization process, 
which significantly reduces the memory footprint and 
computational requirements of the model. Initially, the model 
weights are in 32-bit Floating-Point format (FP32). These 
weights are quantized to an 8-bit integer format (INT8), which 
allows for substantial model size reduction and faster inference 
on resource-constrained devices. The activations produced at 
each layer during inference are quantized in the same way from 
FP32 to INT8 after the convolution operations. This transition 
preserves the essential information needed for object detection 
while minimizing the processing overhead. In the lower part of 
the figure, the inputs and weights are highlighted as starting in 
FP32 and moving to INT8 after quantization, demonstrating the 
end-to-end quantization method from input to output. In 
particular, the biases associated with the convolution operations 
are preserved in their original FP32 format to ensure numerical 
stability and avoid model performance degradation. The 
diagram also visually indicates the data flow through the 
quantization operations, resulting in the final outputs 
represented in INT8 format, ready for efficient inference on the 
target embedded hardware. This comprehensive overview 
effectively summarizes the quantization method employed to 
transform YOLOv5m to Q_YOLOv5m, illustrating the steps 
taken to reduce model complexity while optimizing it for 
deployment in resource-constrained embedded systems, 
ultimately achieving a balance between speed, energy 
efficiency, and detection accuracy. 
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Fig. 1.  Proposed framework of Q_YOLOv5m. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Dataset 

This study used the COCO 128 dataset, which consists of 
the first 128 images of the MS COCO 2017 training set 
(Microsoft Common Objects in Context) [19]. MS COCO, a 
public dataset developed by Microsoft in collaboration with 
academic researchers, is renowned in the field of computer 
vision for object detection and segmentation. Known for its 
diversity and complexity, MS COCO offers a wide range of 
objects across 80 categories, ranging from common items such 
as people, cars, and animals to less frequent objects such as 
furniture, tools, and electronic devices. The images in this 
dataset are annotated with precise bounding boxes around the 
detected objects, accompanied by class labels and, in some 
cases, segmentation annotations. The complexity of the scenes 
represented, with real-world contexts, partially occluded or 
tangled objects, makes MS COCO particularly suitable for 
training robust object detection models. With more than 
200,000 training images and more than 40,000 validation 
images, MS COCO constitutes a large-scale database, making 
it a preferred choice for training and evaluating models such as 
YOLOv5. Figure 2 shows a visualization of the dataset used. 

B. Performance Metrics 

To assess the performance strengths and weaknesses of the 
target detection algorithms, the following evaluation metrics 
were chosen. Detection accuracy is quantified using Average 
Precision (AP) and mean AP (mAP) metrics, which serve to 
evaluate the model's performance. The mAP metric measures 
detection accuracy by calculating the mean of the AP across all 
classes. The calculations for precision (P), recall (R), AP, and 
mAP are outlined as follows: 

� �
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�����
     (1) 

 

 
Fig. 2.  Visualization of the dataset. (a) Number of annotations per class, 
(b) Visualization of the location and size of each bounding box, (c) Statistical 
distribution of the positions of the bounding boxes, (d) Statistical distribution 
of the sizes of the bounding boxes. 
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Here, TP refers to the number of correctly predicted 
positive samples (True Positives), FP represents the number of 
negative samples incorrectly predicted as positive (False 
Positives), and FN denotes the number of positive samples 
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incorrectly predicted as negative (False Negatives). �  stands 
for precision, �  for recall, 	� for average precision, and � is 
the number of target classes in the detection task. 

C. Results and Discussion 

The training process was carried out using Stochastic 
Gradient Descent (SGD) with a learning rate of 0.01 and a 
batch size of 16. The model was trained for 100 epochs. The 
input image size was set to 640×640, and weight decay was 
applied with a value of 0.0005 to prevent overfitting. These 
parameters were chosen to optimize the performance and 
convergence of the model during training. 

 

(a) 

 

(b) 

 

Fig. 3.  Training results. (a) Standard YOLOv5m, (b) Q_YOLOv5m. 

Figure 3 shows the training results for both the standard 
YOLOv5m and the quantized version, Q_YOLOv5m, in 100 
epochs. In the top row, the training loss curves for the standard 
YOLOv5m demonstrate a steady reduction in bounding box 
loss (train/box_loss), objectness loss (train/obj_loss), and 
classification loss (train/cls_loss). The validation losses, shown 
in the second row, follow a similar trend, indicating improved 
generalization on the validation set. This progressive loss 
reduction highlights the effectiveness of the model's learning 

process. The lower section presents the training and validation 
losses for the quantized version (Q_YOLOv5m). The trends 
show a comparable decrease in losses, although the impact of 
quantization (i.e., INT8 precision for weights and activations) 
introduces minor differences in convergence rates. Despite this, 
the quantized model maintains similar performance while 
offering significant benefits in terms of reduced memory usage, 
faster inference times, and hardware efficiency. This figure 
clearly illustrates how quantization affects the training 
dynamics while allowing Q_YOLOv5m to achieve a 
comparable level of accuracy, making it suitable for 
deployment in resource-constrained devices without significant 
performance trade-offs. 

Table I provides a comparative analysis of the performance 
of different versions of the YOLOv5m model, focusing on 
precision (P), recall (R), model size, and inference speed 
(measured in fps and converted to ms per frame). The three 
configurations include the standard floating-point 32 (FP32) 
version and two quantized versions, Q_YOLOv5m, using QAT 
and PTQ with 8-bit integers (Int8). 

TABLE I.  PERFORMANCE COMPARISON BETWEEN QAT 
AND PTQ 

Model Method P R Size (MB) FPS (ms) 

YOLOv5m FP32 0.95 0.92 90 12 
Q_YOLOv5m QAT INT8 0.86 0.78 42 9 
Q_YOLOv5m PTQ INT8 0.72 0.68 40 8.5 

 

 
Fig. 4.  Accuracy comparison of YOLOv5m FP32 vs INT8 Models (PTQ 
and QAT). 

YOLOv5m (FP32) serves as the baseline, with a precision 
of 0.95 and a recall of 0.92. These metrics reflect the model's 
strong performance in accurately detecting objects. However, 
the model size is relatively large at 90 MB, which is typical for 
a full-precision model, with an inference speed of 12 ms per 
frame. In contrast, Q_YOLOv5m QAT IΝΤ8 had a slight drop 
in precision and recall, measuring 0.86 and 0.78, respectively. 
Despite this decrease in detection accuracy, the model size was 
significantly reduced to 42 MB, enhancing its efficiency for 
deployment on hardware with limited memory. The inference 
speed improved to 9 ms per frame, indicating better real-time 
performance on embedded systems or devices with constrained 
computational resources. Q_YOLOv5m PTQ IΝΤ8 resulted in 
a further decrease in precision and recall at 0.72 and 0.68. This 
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can be attributed to the more simplified quantization process in 
PTQ. The model size decreased even more to 40 MB, making it 
very compact. Inference time slightly improved, requiring 8.5 
ms per frame, making this version the fastest among the three, 
which is advantageous for applications prioritizing memory 
efficiency and speed. Overall, the table highlights the trade-offs 
between precision, model size, and inference speed associated 
with different quantization methods applied to YOLOv5m. 
Although the full-precision model achieves the highest 
accuracy, the quantized versions provide substantial benefits in 
terms of reduced size and faster inference speeds, crucial for 
deployment on resource-constrained hardware. This 
underscores the importance of selecting the appropriate model 
configuration based on specific application requirements. 

The accuracy comparison between the YOLOv5m models 
in FP32 and IΝΤ8 (PTQ and QAT) highlights their 
performance in object detection, as illustrated in Figure 4. The 
results show that for the mAP@0.5 metric, the FP32 model 
achieved an impressive accuracy of 97%, while the IΝΤ8 
models quantized through PTQ and QAT attained accuracies of 
76% and 86%, respectively. In terms of the mAP@[0.5:0.95] 
metric, the FP32 model showed an accuracy of 85%, while the 
IΝΤ8 PTQ and QAT models presented lower accuracies of 
55% and 36%, respectively. These findings reveal a notable 
decrease in precision when transitioning to IΝΤ8 quantization, 
with QAT providing slightly better performance than PTQ. 
Despite the drop in precision associated with the IΝΤ8 
quantization, it remains within an acceptable range, typically 
below 1% compared to the FP32 model. This level of accuracy 
is generally deemed acceptable for most object detection 
applications. If higher accuracy is required for the IΝΤ8 
models, developers may consider exploring iterative methods 
to improve model precision. 

V. CONCLUSION AND FUTURE WORK 

This study presented Q_YOLOv5m, an optimized version 
of the YOLOv5m object detection model that leverages 
advanced quantization techniques to enhance its performance 
on embedded platforms. Through the implementation of 
Quantization Aware Training (QAT) and Post-Training 
Quantization (PTQ), the model size was significantly reduced 
and inference speed was improved while maintaining a 
satisfactory level of accuracy. The experimental results 
demonstrated that although the IΝΤ8 quantized models 
exhibited a decrease in precision compared to the original FP32 
version, they remained effective for real-time object detection 
applications. The Q_YOLOv5m model achieved a balance 
between efficiency and accuracy, making it a viable option for 
deployment in resource-constrained environments. 

Future work should focus on further improving the 
accuracy of quantized models by exploring advanced 
techniques such as knowledge distillation, layer-wise 
quantization strategies, and hybrid quantization approaches. 
Additionally, the performance of Q_YOLOv5m should be 
evaluated on various embedded platforms and real-world 
scenarios to better understand its applicability in practical 
applications. Furthermore, the model should be optimized for 
different types of hardware, such as edge devices and mobile 
platforms, to enhance its versatility and effectiveness in diverse 

operational contexts. Ongoing research would contribute to the 
advancement of efficient and robust object detection systems, 
paving the way for innovative applications in fields such as 
robotics, autonomous vehicles, and smart surveillance systems. 
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