
Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 19749-19755 19749

www.etasr.com Alshammry et al.: Q_YOLOv5m: A Quantization-based Approach for Accelerating Object Detection on …

Q_YOLOv5m: A Quantization-based Approach
for Accelerating Object Detection on Embedded
Platforms

Nizal Alshammry

Department of Computer Sciences, Faculty of Computing and Information Technology, Northern Border
University, Rafha, Saudi Arabia
nizal.alshammari@nbu.edu.sa

Taoufik Saidani

Center for Scientific Research and Entrepreneurship, Northern Border University, 73213, Arar, Saudi
Arabia
taoufik.saidan@nbu.edu.sa (corresponding author)

Nasser S. Albalawi

Department of Computer Sciences, Faculty of Computing and Information Technology, Northern Border
University, Rafha, Saudi Arabia
nasser.albalawi@nbu.edu.sa

Sami Mohammed Alenezi

Department of Information Technology, Faculty of Computing and Information Technology, Northern
Border University, Rafha, Saudi Arabia
sami.m.alenezi@nbu.edu.sa

Fahd Alhamazani

Department of Computer Sciences, Faculty of Computing and Information Technology, Northern Border
University, Rafha, Saudi Arabia
fahd.alhamzani@nbu.edu.sa

Sami Aziz Alshammari

Department of Information Technology, Faculty of Computing and Information Technology, Northern
Border University Rafha, Saudi Arabia
sami.alshammari@nbu.edu.sa

Mohammed Aleinzi

Department of Information Systems, Faculty of Computing and Information Technology, Northern
Border University, Rafha, Saudi Arabia
mohammed.aleinzi@nbu.edu.sa

Abdulaziz Alanazi

Department of Information Systems, Faculty of Computing and Information Technology, Northern
Border University Rafha, Saudi Arabia
abdulaziz.alanazi@nbu.edu.sa

Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 19749-19755 19750

www.etasr.com Alshammry et al.: Q_YOLOv5m: A Quantization-based Approach for Accelerating Object Detection on …

Mahmoud Salaheldin Elsayed

Department of Computer Sciences, Faculty of Computing and Information Technology, Northern Border
University, Rafha, Saudi Arabia
mahmoud.al-sayed@nbu.edu.sa

Received: 29 October 2024 | Revised: 9 November 2024 | Accepted: 8 December 2024

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.9441

ABSTRACT

The deployment of deep learning models on resource-constrained embedded platforms presents significant

challenges due to limited computational power, memory, and energy efficiency. To address this issue, this

study proposes a novel quantization method tailored to accelerate object detection using a quantized

version of the YOLOv5m model, called Q_YOLOv5m. This method reduces the model's computational

complexity and memory footprint, allowing for faster inference and lower power consumption, making it

ideal for real-time applications on embedded systems. This approach incorporates advanced weight and

activation quantization techniques to balance performance with accuracy, dynamically adjusting precision

based on hardware capabilities. The efficacy of Q_YOLOv5m was confirmed, exhibiting substantial

enhancements in inference speed and a reduction in model size with negligible loss in object detection

accuracy. The findings underscore the capability of Q_YOLOv5m for edge applications, including

autonomous vehicles, intelligent surveillance, and IoT-based monitoring systems.

Keywords-object detection; quantization; embedded systems; deep learning

I. INTRODUCTION

The expansion of edge computing and the Internet of
Things (IoT) has significantly increased the demand for
deploying deep learning models on embedded systems. Object
detection, a core task in applications such as autonomous
vehicles, smart surveillance, and industrial automation, requires
real-time inference with minimal latency and high accuracy.
Models such as the YOLO (You Only Look Once) family,
particularly YOLOv5 [1], have gained prominence due to their
ability to achieve a balance between speed and accuracy.
Despite these advantages, even smaller models, such as
YOLOv5m, pose significant computational and memory
challenges when deployed on embedded platforms with
constrained resources. Embedded platforms, which are
typically powered by ARM-based processors, microcontrollers,
or other low power devices, are limited in terms of processing
power, memory, and energy consumption [2]. This makes it
challenging to run standard deep learning models, which are
often designed for high-performance GPUs or cloud-based
infrastructures [3]. To address these limitations, model
compression techniques have become essential [4]. Among
them, quantization is one of the most effective methods for
reducing computational complexity and memory requirements
without sacrificing significant accuracy [5-6]. Quantization
works by converting the 32-bit floating-point operations of a
neural network into lower-precision operations, such as 8-bit
integers [7]. This process reduces the memory footprint and
allows faster computation by leveraging hardware-specific
acceleration features [8]. However, applying quantization to
object detection models, such as YOLOv5, introduces unique
challenges. Object detection relies on precision for both
classification and localization tasks, and naïve quantization can
result in notable accuracy degradation, especially in detecting
small or overlapping objects [9]. Therefore, careful balancing is
required to optimize inference speed and memory usage
without compromising the model's performance.

This study proposes Q_YOLOv5m, a quantized version of
the YOLOv5m model specifically designed for embedded
platforms [10]. Q_YOLOv5m leverages advanced quantization
techniques, including hybrid precision and hardware-aware
quantization. Hybrid precision quantization dynamically
adjusts the precision of the model's weights and activations
based on the criticality of each layer to overall accuracy,
ensuring that layers with greater influence on detection
performance retain higher precision. Additionally, hardware-
aware quantization tailors the model for specific embedded
platforms by taking advantage of available computational
resources, such as low-precision arithmetic support on ARM
processors [11]. The proposed method demonstrates significant
improvements in inference speed, memory efficiency, and
energy consumption, with only minimal impact on detection
accuracy. By optimizing the quantization process,
Q_YOLOv5m offers a practical solution for real-time object
detection tasks on resource-constrained devices. The
contributions of this study include:

 Applying a novel quantization method to YOLOv5m,
creating Q_YOLOv5m, optimized for embedded platforms.

 A detailed analysis of the trade-offs between quantization
precision and object detection accuracy.

 Insights into the effectiveness of advanced quantization
techniques, such as hybrid precision and hardware-aware
quantization, for efficient embedded deployment.

II. OVERVIEW OF QUANTIZATION TECHNIQUE

As deep learning models continue to evolve, the demand
for efficient model deployment in resource-constrained
environments has led to the development of various
compression and quantization techniques. These methods aim
to reduce the size and complexity of neural networks while
maintaining their accuracy, which is crucial for embedded
system applications. This section provides an overview of the

Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 19749-19755 19751

www.etasr.com Alshammry et al.: Q_YOLOv5m: A Quantization-based Approach for Accelerating Object Detection on …

two primary quantization approaches used in this study:
Quantization-Aware Training (QAT) and Post-Training
Quantization (PQT).

A. Quantization-Aware Training (QAT)

QAT incorporates quantization during the training process,
allowing the model to learn to mitigate the negative impacts of
reduced precision by simulating the effects of quantization in
both the forward and backward passes of training. During this
process, weights and activations are quantized to lower
precision (e.g., 8 bits) while retaining the model's original
floating-point representation, enabling adaptation to the
quantization process [10]. The quantization operations,
typically non-differentiable, are approximated to facilitate
gradient-based optimization. Techniques such as straight-
through estimators allow gradients to flow through quantized
layers effectively [11]. After the initial training phase, the
model undergoes a fine-tuning process that further trains it with
the applied quantization effects, refining its parameters, and
improving its performance under quantized conditions [12].
QAT has been shown to deliver superior performance
compared to other methods, as it enhances the model's
robustness against quantization-induced errors, resulting in
greater accuracy for tasks such as object detection [13].

B. Post-Training Quantization (PQT)

PQT is a technique applied to pre-trained models, enabling
quantization after the model has been trained, which is
advantageous in scenarios where retraining is computationally
expensive or infeasible. PQT can be implemented as static or
dynamic quantization. Static quantization involves determining
the scale and zero-point for quantization during a calibration
phase, typically using a representative dataset [14], while
dynamic quantization adjusts the quantization parameters at
inference time based on the input data [15]. Additionally, PQT
allows different quantization levels to be applied to various
layers of the model based on their sensitivity to quantization
errors, facilitating a more fine-grained optimization of the
quantization process [16]. Although PQT may result in some
loss of accuracy compared to QAT, it can still achieve
satisfactory performance, especially when combined with
techniques such as layer fusion and calibration [17]. This
approach is particularly useful for deploying models in
environments with limited training data or computational
resources, allowing developers to utilize existing models while
enhancing efficiency through quantization [18, 19].

III. PROPOSED APPROACH - Q_YOLOV5M

This section outlines the quantization method implemented
to adapt the YOLOv5m architecture for efficient deployment
on embedded platforms, resulting in the Q_YOLOv5m model,
as shown in Figure 1. The YOLOv5 architecture consists of
two main components, the backbone and the PANet, each
playing a pivotal role in the model's overall functionality. The
backbone is primarily responsible for extracting rich feature
representations from the input image. It consists of several
BottleneckCSP (Cross Stage Partial) blocks, which utilize a
unique approach to feature extraction. Each BottleneckCSP
block is designed to enhance the flow of gradients during
training, thereby improving the efficiency of the learning

process [20]. This is achieved through residual connections,
which allow the network to learn identity mappings, facilitating
the training of deeper networks without encountering the
vanishing gradient problem. The CSP blocks divide the input
features into two paths: one that processes the features directly
through convolutions and another that splits and merges the
features, thereby promoting a more diverse set of learned
representations. This design helps to retain critical information
while also allowing the model to learn richer and more varied
feature maps. Next, PANet (Path Aggregation Network) is
integrated into the architecture to enhance the feature
aggregation process. PANet builds on the outputs from the
backbone by performing upsampling and concatenation of
features across different scales. This multiscale feature
integration is crucial for object detection, as it allows the model
to maintain spatial hierarchies and capture features of varying
sizes, which is essential for detecting objects of different
dimensions. Specifically, PANet improves the information
flow between different layers, thereby optimizing the feature
maps before they reach the final detection head. This
aggregation process is instrumental in refining the features,
enabling the model to produce more accurate predictions. After
feature extraction and aggregation, the final output layer
generates predictions that include class scores, bounding box
coordinates, and objectness scores for the detected objects. This
end-to-end architecture design allows simultaneous predictions
across multiple scales, making YOLOv5 particularly effective
for real-time object detection applications. Overall, the
integration of the backbone and PANet components into the
YOLOv5 architecture exemplifies a well-thought-out design
that balances efficiency, accuracy, and speed, paving the way
for enhanced performance in various computer vision tasks.

A key aspect of this method is the quantization process,
which significantly reduces the memory footprint and
computational requirements of the model. Initially, the model
weights are in 32-bit Floating-Point format (FP32). These
weights are quantized to an 8-bit integer format (INT8), which
allows for substantial model size reduction and faster inference
on resource-constrained devices. The activations produced at
each layer during inference are quantized in the same way from
FP32 to INT8 after the convolution operations. This transition
preserves the essential information needed for object detection
while minimizing the processing overhead. In the lower part of
the figure, the inputs and weights are highlighted as starting in
FP32 and moving to INT8 after quantization, demonstrating the
end-to-end quantization method from input to output. In
particular, the biases associated with the convolution operations
are preserved in their original FP32 format to ensure numerical
stability and avoid model performance degradation. The
diagram also visually indicates the data flow through the
quantization operations, resulting in the final outputs
represented in INT8 format, ready for efficient inference on the
target embedded hardware. This comprehensive overview
effectively summarizes the quantization method employed to
transform YOLOv5m to Q_YOLOv5m, illustrating the steps
taken to reduce model complexity while optimizing it for
deployment in resource-constrained embedded systems,
ultimately achieving a balance between speed, energy
efficiency, and detection accuracy.

Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 19749-19755 19752

www.etasr.com Alshammry et al.: Q_YOLOv5m: A Quantization-based Approach for Accelerating Object Detection on …

Fig. 1. Proposed framework of Q_YOLOv5m.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Dataset

This study used the COCO 128 dataset, which consists of
the first 128 images of the MS COCO 2017 training set
(Microsoft Common Objects in Context) [19]. MS COCO, a
public dataset developed by Microsoft in collaboration with
academic researchers, is renowned in the field of computer
vision for object detection and segmentation. Known for its
diversity and complexity, MS COCO offers a wide range of
objects across 80 categories, ranging from common items such
as people, cars, and animals to less frequent objects such as
furniture, tools, and electronic devices. The images in this
dataset are annotated with precise bounding boxes around the
detected objects, accompanied by class labels and, in some
cases, segmentation annotations. The complexity of the scenes
represented, with real-world contexts, partially occluded or
tangled objects, makes MS COCO particularly suitable for
training robust object detection models. With more than
200,000 training images and more than 40,000 validation
images, MS COCO constitutes a large-scale database, making
it a preferred choice for training and evaluating models such as
YOLOv5. Figure 2 shows a visualization of the dataset used.

B. Performance Metrics

To assess the performance strengths and weaknesses of the
target detection algorithms, the following evaluation metrics
were chosen. Detection accuracy is quantified using Average
Precision (AP) and mean AP (mAP) metrics, which serve to
evaluate the model's performance. The mAP metric measures
detection accuracy by calculating the mean of the AP across all
classes. The calculations for precision (P), recall (R), AP, and
mAP are outlined as follows:

� �
��

�����
 (1)

Fig. 2. Visualization of the dataset. (a) Number of annotations per class,
(b) Visualization of the location and size of each bounding box, (c) Statistical
distribution of the positions of the bounding boxes, (d) Statistical distribution
of the sizes of the bounding boxes.

� �
��

�����
 (2)

	� �
 �����
�

�
 (3)

�	� �
�

�
∑ 	��
��� (4)

Here, TP refers to the number of correctly predicted
positive samples (True Positives), FP represents the number of
negative samples incorrectly predicted as positive (False
Positives), and FN denotes the number of positive samples

Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 19749-19755 19753

www.etasr.com Alshammry et al.: Q_YOLOv5m: A Quantization-based Approach for Accelerating Object Detection on …

incorrectly predicted as negative (False Negatives). � stands
for precision, � for recall, 	� for average precision, and � is
the number of target classes in the detection task.

C. Results and Discussion

The training process was carried out using Stochastic
Gradient Descent (SGD) with a learning rate of 0.01 and a
batch size of 16. The model was trained for 100 epochs. The
input image size was set to 640×640, and weight decay was
applied with a value of 0.0005 to prevent overfitting. These
parameters were chosen to optimize the performance and
convergence of the model during training.

(a)

(b)

Fig. 3. Training results. (a) Standard YOLOv5m, (b) Q_YOLOv5m.

Figure 3 shows the training results for both the standard
YOLOv5m and the quantized version, Q_YOLOv5m, in 100
epochs. In the top row, the training loss curves for the standard
YOLOv5m demonstrate a steady reduction in bounding box
loss (train/box_loss), objectness loss (train/obj_loss), and
classification loss (train/cls_loss). The validation losses, shown
in the second row, follow a similar trend, indicating improved
generalization on the validation set. This progressive loss
reduction highlights the effectiveness of the model's learning

process. The lower section presents the training and validation
losses for the quantized version (Q_YOLOv5m). The trends
show a comparable decrease in losses, although the impact of
quantization (i.e., INT8 precision for weights and activations)
introduces minor differences in convergence rates. Despite this,
the quantized model maintains similar performance while
offering significant benefits in terms of reduced memory usage,
faster inference times, and hardware efficiency. This figure
clearly illustrates how quantization affects the training
dynamics while allowing Q_YOLOv5m to achieve a
comparable level of accuracy, making it suitable for
deployment in resource-constrained devices without significant
performance trade-offs.

Table I provides a comparative analysis of the performance
of different versions of the YOLOv5m model, focusing on
precision (P), recall (R), model size, and inference speed
(measured in fps and converted to ms per frame). The three
configurations include the standard floating-point 32 (FP32)
version and two quantized versions, Q_YOLOv5m, using QAT
and PTQ with 8-bit integers (Int8).

TABLE I. PERFORMANCE COMPARISON BETWEEN QAT
AND PTQ

Model Method P R Size (MB) FPS (ms)

YOLOv5m FP32 0.95 0.92 90 12
Q_YOLOv5m QAT INT8 0.86 0.78 42 9
Q_YOLOv5m PTQ INT8 0.72 0.68 40 8.5

Fig. 4. Accuracy comparison of YOLOv5m FP32 vs INT8 Models (PTQ
and QAT).

YOLOv5m (FP32) serves as the baseline, with a precision
of 0.95 and a recall of 0.92. These metrics reflect the model's
strong performance in accurately detecting objects. However,
the model size is relatively large at 90 MB, which is typical for
a full-precision model, with an inference speed of 12 ms per
frame. In contrast, Q_YOLOv5m QAT IΝΤ8 had a slight drop
in precision and recall, measuring 0.86 and 0.78, respectively.
Despite this decrease in detection accuracy, the model size was
significantly reduced to 42 MB, enhancing its efficiency for
deployment on hardware with limited memory. The inference
speed improved to 9 ms per frame, indicating better real-time
performance on embedded systems or devices with constrained
computational resources. Q_YOLOv5m PTQ IΝΤ8 resulted in
a further decrease in precision and recall at 0.72 and 0.68. This

Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 19749-19755 19754

www.etasr.com Alshammry et al.: Q_YOLOv5m: A Quantization-based Approach for Accelerating Object Detection on …

can be attributed to the more simplified quantization process in
PTQ. The model size decreased even more to 40 MB, making it
very compact. Inference time slightly improved, requiring 8.5
ms per frame, making this version the fastest among the three,
which is advantageous for applications prioritizing memory
efficiency and speed. Overall, the table highlights the trade-offs
between precision, model size, and inference speed associated
with different quantization methods applied to YOLOv5m.
Although the full-precision model achieves the highest
accuracy, the quantized versions provide substantial benefits in
terms of reduced size and faster inference speeds, crucial for
deployment on resource-constrained hardware. This
underscores the importance of selecting the appropriate model
configuration based on specific application requirements.

The accuracy comparison between the YOLOv5m models
in FP32 and IΝΤ8 (PTQ and QAT) highlights their
performance in object detection, as illustrated in Figure 4. The
results show that for the mAP@0.5 metric, the FP32 model
achieved an impressive accuracy of 97%, while the IΝΤ8
models quantized through PTQ and QAT attained accuracies of
76% and 86%, respectively. In terms of the mAP@[0.5:0.95]
metric, the FP32 model showed an accuracy of 85%, while the
IΝΤ8 PTQ and QAT models presented lower accuracies of
55% and 36%, respectively. These findings reveal a notable
decrease in precision when transitioning to IΝΤ8 quantization,
with QAT providing slightly better performance than PTQ.
Despite the drop in precision associated with the IΝΤ8
quantization, it remains within an acceptable range, typically
below 1% compared to the FP32 model. This level of accuracy
is generally deemed acceptable for most object detection
applications. If higher accuracy is required for the IΝΤ8
models, developers may consider exploring iterative methods
to improve model precision.

V. CONCLUSION AND FUTURE WORK

This study presented Q_YOLOv5m, an optimized version
of the YOLOv5m object detection model that leverages
advanced quantization techniques to enhance its performance
on embedded platforms. Through the implementation of
Quantization Aware Training (QAT) and Post-Training
Quantization (PTQ), the model size was significantly reduced
and inference speed was improved while maintaining a
satisfactory level of accuracy. The experimental results
demonstrated that although the IΝΤ8 quantized models
exhibited a decrease in precision compared to the original FP32
version, they remained effective for real-time object detection
applications. The Q_YOLOv5m model achieved a balance
between efficiency and accuracy, making it a viable option for
deployment in resource-constrained environments.

Future work should focus on further improving the
accuracy of quantized models by exploring advanced
techniques such as knowledge distillation, layer-wise
quantization strategies, and hybrid quantization approaches.
Additionally, the performance of Q_YOLOv5m should be
evaluated on various embedded platforms and real-world
scenarios to better understand its applicability in practical
applications. Furthermore, the model should be optimized for
different types of hardware, such as edge devices and mobile
platforms, to enhance its versatility and effectiveness in diverse

operational contexts. Ongoing research would contribute to the
advancement of efficient and robust object detection systems,
paving the way for innovative applications in fields such as
robotics, autonomous vehicles, and smart surveillance systems.

ACKNOWLEDGEMENT

The authors extend their appreciation to the Deanship of
Scientific Research, Northern Border University, Arar, KSA,
for funding this research work through project number NBU-
FFR-2024-1584-03.

REFERENCES

[1] A. Dhillon and G. K. Verma, "Convolutional neural network: a review
of models, methodologies and applications to object detection," Progress
in Artificial Intelligence, vol. 9, no. 2, pp. 85–112, Jun. 2020,
https://doi.org/10.1007/s13748-019-00203-0.

[2] A. Lopes, F. Pereira dos Santos, D. de Oliveira, M. Schiezaro, and H.
Pedrini, "Computer Vision Model Compression Techniques for
Embedded Systems:A Survey," Computers & Graphics, vol. 123, Oct.
2024, Art. no. 104015, https://doi.org/10.1016/j.cag.2024.104015.

[3] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
"A Survey of Quantization Methods for Efficient Neural Network
Inference," in Low-Power Computer Vision, Chapman and Hall/CRC,
2022.

[4] B. Yao, L. Liu, Y. Peng, and X. Peng, "Intelligent Measurement on Edge
Devices Using Hardware Memory-Aware Joint Compression Enabled
Neural Networks," IEEE Transactions on Instrumentation and
Measurement, vol. 73, pp. 1–13, 2024, https://doi.org/10.1109/TIM.
2023.3341126.

[5] H. Wu, P. Judd, X. Zhang, M. Isaev, and P. Micikevicius, "Integer
Quantization for Deep Learning Inference: Principles and Empirical
Evaluation." arXiv, Apr. 20, 2020, https://doi.org/10.48550/arXiv.2004.
09602.

[6] J. Gorospe, R. Mulero, O. Arbelaitz, J. Muguerza, and M. Á. Antón, "A
Generalization Performance Study Using Deep Learning Networks in
Embedded Systems," Sensors, vol. 21, no. 4, Jan. 2021, Art. no. 1031,
https://doi.org/10.3390/s21041031.

[7] P. Xiao, C. Zhang, Q. Guo, X. Xiao, and H. Wang, "Neural Networks
Integer Computation: Quantizing Convolutional Neural Networks of
Inference and Training for Object Detection in Embedded Systems,"
IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, vol. 17, pp. 15862–15884, 2024, https://doi.org/
10.1109/JSTARS.2024.3452321.

[8] M. A. Hanif and M. Shafique, "Cross-Layer Optimizations for Efficient
Deep Learning Inference at the Edge," in Embedded Machine Learning
for Cyber-Physical, IoT, and Edge Computing: Software Optimizations
and Hardware/Software Codesign, S. Pasricha and M. Shafique, Eds.
Cham: Springer Nature Switzerland, 2024, pp. 225–248.

[9] M. Wang et al., "Q-YOLO: Efficient Inference for Real-Time Object
Detection," in Pattern Recognition, Kitakyushu, Japan, Nov. 2023, pp.
307–321, https://doi.org/10.1007/978-3-031-47665-5_25.

[10] T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, "Pruning and
quantization for deep neural network acceleration: A survey,"
Neurocomputing, vol. 461, pp. 370–403, Oct. 2021, https://doi.org/
10.1016/j.neucom.2021.07.045.

[11] B. Jacob et al., "Quantization and Training of Neural Networks for
Efficient Integer-Arithmetic-Only Inference," in 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Salt Lake
City, UT, USA Jun. 2018, pp. 2704–2713, https://doi.org/10.1109/
CVPR.2018.00286.

[12] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, "XNOR-Net:
ImageNet Classification Using Binary Convolutional Neural Networks,"
in Computer Vision – ECCV 2016, Amsterdam, The Netherlands, 2016,
pp. 525–542, https://doi.org/10.1007/978-3-319-46493-0_32.

[13] J. Y. Li, Y. K. Zhao, Z. E. Xue., Z. Cai, and Q. Li., "A survey of model
compression for deep neural networks," Chinese Journal of Engineering,

Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 19749-19755 19755

www.etasr.com Alshammry et al.: Q_YOLOv5m: A Quantization-based Approach for Accelerating Object Detection on …

vol. 41, no. 10, pp. 1229–1239, Oct. 2019, https://doi.org/10.13374/
j.issn2095-9389.2019.03.27.002.

[14] P.-E. Novac, G. Boukli Hacene, A. Pegatoquet, B. Miramond, and V.
Gripon, "Quantization and Deployment of Deep Neural Networks on
Microcontrollers," Sensors, vol. 21, no. 9, Jan. 2021, Art. no. 2984,
https://doi.org/10.3390/s21092984.

[15] A. Polino, R. Pascanu, and D. Alistarh, "Model compression via
distillation and quantization." arXiv, Feb. 15, 2018, https://doi.org/
10.48550/arXiv.1802.05668.

[16] Y. Ding et al., "Towards Accurate Post-Training Quantization for Vision
Transformer," in Proceedings of the 30th ACM International Conference
on Multimedia, Lisboa, Portugal, Oct. 2022, pp. 5380–5388,
https://doi.org/10.1145/3503161.3547826.

[17] M. Li et al., "Contemporary Advances in Neural Network Quantization:
A Survey," in 2024 International Joint Conference on Neural Networks
(IJCNN), Yokohama, Japan, Jun. 2024, pp. 1–10, https://doi.org/
10.1109/IJCNN60899.2024.10650109.

[18] R. Zhang and A. C. S. Chung, "EfficientQ: An efficient and accurate
post-training neural network quantization method for medical image
segmentation," Medical Image Analysis, vol. 97, Oct. 2024, Art. no.
103277, https://doi.org/10.1016/j.media.2024.103277.

[19] T. Y. Lin et al., "Microsoft COCO: Common Objects in Context," in
Computer Vision – ECCV 2014, Zurich, Switzerland, 2014, pp. 740–
755, https://doi.org/10.1007/978-3-319-10602-1_48.

[20] T. Saidani, R. Ghodhbani, A. Alhomoud, A. Alshammari, H. Zayani,
and M. B. Ammar, "Hardware Acceleration for Object Detection using
YOLOv5 Deep Learning Algorithm on Xilinx Zynq FPGA Platform,"
Engineering, Technology & Applied Science Research, vol. 14, no. 1,
pp. 13066–13071, Feb. 2024, https://doi.org/10.48084/etasr.6761.

