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ABSTRACT 

Today, ontologies are the widely accepted framework for managing knowledge in a manner that supports 

sharing, reuse, and automatic interpretation. Ontologies are fundamental to various Artificial Intelligence 

(AI) applications, including smart information retrieval, knowledge management, and contextual 

organization. However, the rapid growth of data in various domains has made ontology acquisition and 

enrichment, time-consuming, labor-intensive, and expensive. Consequently, there is a need for automated 

methods for this task, commonly referred to as ontology learning. Deep learning models have made 

significant advancements in this field, as they can extract concepts from vast corpora and infer semantic 

relationships from wide-ranging datasets. This paper aims to explore and synthesize existing research on 

the application of deep learning techniques to ontology learning. To achieve this, a Systematic Mapping 

Study (SMS) was conducted, encompassing 2765 papers published between 2015 and September 2024, 

from which 47 research papers were selected for review and analysis. The studies were systematically 

categorized according to eight refined criteria: publication year, type of contribution, empirical study 

design, type of data used, deep learning techniques implemented, domain of application, focused ontology 

learning tasks, and evaluation metrics and benchmarks. 

Keywords-ontology; ontology learning; deep learning; systematic mapping study; knowledge representation 

I. INTRODUCTION  

The purely philosophical concept of ontology, which began 
in the 1990s, has evolved into one of the key paradigms within 
computer science and information systems. Nowadays, 
ontologies can also serve as a kind of domain knowledge 
representation, that is, a way to systemize and harmonize 
concepts across many disciplines [1]. This evolution has 
enabled syntactic interoperability to evolve into semantic 
interoperability, giving systems a way to consistently find 
meaning in data [2]. As a result, ontologies have become 
instrumental in enhancing data integration, information 
retrieval, and decision making in areas as diverse as healthcare 
[3], knowledge management [4], and semantic web 
technologies [5]. For example, recent works point out their role 
in integrating complex datasets in personalized medicine and 
other rapidly evolving domains [6]. Ontology development and 

maintenance activities remain resource-intensive and time-
consuming. Traditional ontology development relies heavily on 
domain-driven experts, leading to scalability bottlenecks and 
human errors [7]. These challenges are further compounded 
when heterogeneous data sources need to be integrated, as 
inconsistencies can arise, leading to incompleteness and biased 
representations of knowledge [8]. The dynamic nature of most 
fields, such as healthcare or technology, also poses challenges, 
as many ontology-based systems lack the flexibility to quickly 
adapt to new information [9]. Such limitations signify the need 
for automated and intelligent techniques to facilitate the 
process of ontology development and maintenance [10]. In this 
context, ontology learning has emerged as a promising 
solution. Ontology learning enables the automated extraction of 
terms, relations, and axioms from textual data [9]. By reducing 
the reliance on manual input, ontology learning significantly 
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enhances the efficiency and scalability of ontology 
development. Recent research in deep learning has further 
improved the accuracy and flexibility of these approaches [11]. 
These models are capable of handling complex and high-
dimensional data, making them suitable for automating and 
refining the ontology learning process [12]. Algorithms such as 
Convolutional Neural Networks (CNNs), Recurrent Neural 
Networks (RNNs), Transformer Models, Graph Neural 
Networks (GNNs), and Large Language Models (LLMs), 
including BERT and GPT, excel at capturing deep semantic 
structures and contextual information, providing new avenues 
toward enhanced, accurate, and complete ontology 
development, thereby enhancing the overall quality and 
scalability of knowledge representation systems. 

The scope of this Systematic Mapping Study (SMS) is to 
explore the intersection of ontology learning and deep learning 
techniques. It aims to categorize and analyze the existing body 
of research based on eight criteria: publication year, type of 
contribution, empirical study design, type of data used, deep 
learning techniques implemented, domain of application, 
focused ontology learning tasks, and evaluation metrics and 
benchmarks. This categorization provides a comprehensive 
overview of the current state of knowledge and highlights 
emerging trends and research gaps in the field. 

II. RESEARCH METHODOLOGY 

In this research, a systematic mapping was conducted to 
find the application of deep learning models or techniques in 
ontology learning. According to the authors in [13], a SMS is a 
method that systematically provides a high-level, organized 
overview of a field of study by categorizing and synthesizing 
the existing literature. In contrast to the detailed systematic 
review, SMS classifies the included studies according to study 
dimensions such as research topics, methodology, and 
application domain, thus providing an overview of the area 
under study. It involves defining research questions, 
developing a search strategy, selecting studies using predefined 
criteria, and extracting data to effectively categorize these 
studies. 

A. Research Questions 

Table I outlines the key Research Questions (RQs) that 
have structured and guided the SMS on deep learning-based 
ontology learning. These are aimed at contributions, methods, 
data, techniques, tasks, and metrics in selected studies, with 
motivations focused on tracking research evolution, identifying 
trends, and evaluating methodologies. 

B. Search Strategy 

This SMS implemented an extensive search strategy to 
identify relevant literature related to deep learning-based 
ontology learning. Various databases known for their extensive 
coverage of computer science and Artificial Intelligence (AI) 
research were included: IEEE Xplore, Springer Link, Elsevier-
ScienceDirect, Google Scholar, and ACM Digital Library. The 
target databases were selected based on their ability to provide 
access to peer-reviewed journals, conference proceedings, and 
technical reports to ensure a broad and comprehensive search. 
The search was restricted to peer-reviewed articles, conference 

proceedings, and high-impact book chapters published between 
2015 and September 2024 to maintain a focus on recent and 
high-quality studies. 

The main search string used was: ("Ontology" AND 
("Ontology Development" OR "Ontology Construction" OR 
"Ontology Acquisition" OR "Ontology Enrichment" OR 
"Ontology Population" OR "Ontology Extension" OR 
"Ontology Learning")) AND ("Deep Learning" OR "Neural 
Networks" OR "GNN" OR "Transformer" OR "CNN" OR 
"RNN" OR "Long Short-Time Memory (LSTM)" OR 
"LLMs"). This query targeted abstract, title, and keyword fields 
to capture papers related to ontology work such as 
development, enrichment, and population associated with deep 
learning methods such as Neural Networks (NNs), GNNs, or 
LLMs. This search, with appropriate modifications to 
individual databases, ensured that the recent advances in the 
field were covered for each relevant term. 

TABLE I.  KEY RESEARCH QUESTIONS AND 
MOTIVATIONS 

ID Research question Motivation 

RQ1 
What types of publications are 

present in selected studies, and how 
are they distributed over time? 

To trace the evolution of 
publications and 

highlight innovations 

RQ2 

What types of empirical studies and 
contribution are commonly used in 

selected studies on deep learning for 
ontology learning? 

To identify common 
methodologies and their 

reliability in the field 

RQ3 
What data types are utilized in 

selected studies for deep learning-
based ontology learning? 

To understand data 
diversity and its impact 
on deep learning models 

RQ4 
Which deep learning techniques are 
predominantly applied in selected 

studies for ontology learning tasks? 

To discover effective 
models and techniques 
for ontology learning 

RQ5 
What ontology learning tasks and 
domains are addressed by selected 

studies using deep learning? 

To map tasks and 
domains addressed by 
deep learning methods 

RQ6 

What evaluation metrics and 
benchmarks are employed in selected 

studies to assess deep learning 
models in ontology learning? 

To standardize and 
improve performance 
evaluation practices 

 

C. Selection Criteria 

1) Inclusion and Exclusion Criteria 

The definition of inclusion and exclusion criteria is one of 
the most important steps in the selection of studies within an 
SMS, as it guarantees a better quality and relevance of the 
studies considered suitable for inclusion. These criteria are 
used to filter out poor or irrelevant papers so that the review 
can focus on only the most valuable and credible research. The 
criteria used in the present study are presented in Table II. 

2) Study Selection Summary 

The initial search in five databases, including IEEE Xplore, 
Springer Link, Elsevier-ScienceDirect, Google Scholar, and 
ACM Digital Library, yielded a total of 2765 studies. The 
selection process included several filtering stages, as shown in 
the PRISMA flow diagram in Figure 1. First, duplicate studies 
were identified and removed, further refining the pool to 2164 
papers. Second, titles, abstracts, and keywords were screened, 
reducing the pool to 286 publications. A subsequent full-text 
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review narrowed the selection to 85 studies that met all criteria. 
The final dataset consisted of 20 peer-reviewed journal articles 
and 27 conference proceedings. 

TABLE II.  SUMMARY OF INCLUSION AND EXCLUSION 
CRITERIA FOR THE SMS 

Criteria Details 

Inclusion 

Automated/semi-automated ontology learning based on deep 
learning methods 

Publications that present empirical findings or evaluations 
Publications from 2015 to September 2024 

Peer-reviewed articles, conference papers, and high-impact 
book chapters 

Highly indexed sources 
Only articles published in English 

Exclusion 

Manual ontology construction without automation 
Studies that do not focus on deep learning in the context of 

ontology learning 
Studies lacking empirical findings or evaluations 

Systematic literature reviews or systematic mapping studies 
Non-peer-reviewed content 

Brief studies (less than four pages) 
Non-English publications 

 

 
Fig. 1.  PRISMA flow diagram illustrating the study selection process. 

D. Data Extraction and Analysis 

The data extraction process was designed to directly 
address the RQs posed in the study. Each parameter was 
carefully selected to provide the necessary information to 
comprehensively address these questions, as shown in Table 
III. This approach allowed for a detailed analysis and 
categorization of trends, methodologies, and applications in 
deep learning-based ontology learning, supporting the 
motivations behind each research question. 

TABLE III.  DATA EXTRACTION AND ANALYSIS 
PARAMETERS 

Parameters 

Research 

Question 

Addressed 

Purpose 

Title, DOI, and 
author(s) 

All RQs 
Provide bibliographic information for 

reference purposes 
Paper type, source, 

and year of 
publication 

RQ1 
Identify the distribution of 

publications by time and type 

Contribution type RQ1 
Identify the nature and distribution of 
a contribution, such as frameworks, 

algorithms 
Empirical study 

type 
RQ2 

Understand common and frequent 
approaches and assess their reliability 

Type of data used RQ3 Identify data diversity and how it 
applies to different models 

Deep learning 
methods/techniques 

RQ4 
Discover predominant techniques and 

their effectiveness. 
Ontology learning 

tasks 
RQ5 

Map tasks and domains addressed by 
deep learning methods and techniques 

Domain/field RQ5 
Describe the application areas of the 

ontology learning methods 
Evaluation 

metrics/benchmarks 
RQ6 

Standardize and improve performance 
evaluation practices 

 

III. RESULTS AND ANALYSIS 

A. Publication Trends and Sources (RQ1) 

The publication trends of the selected studies, shown in 
Figure 2, show a gradual increase in research activity and a 
sharper increase in 2019, when the applied developments in AI 
technologies made the deep learning applications of ontology 
learning more interventional. The spike in 2023 marks a peak 
in innovation, probably due to the emergence of advanced 
models such as transformers and LLMs. The small dip in 2024 
may be due to incomplete access to all publications. Overall, 
this trend shows the growing maturity and importance of deep 
learning in ontology learning, with the field gaining momentum 
and focus. 

 

 
Fig. 2.  Evolution of publications in the selected studies. 

The chart in Figure 3 shows that Springer Link and ACM 
Digital Library have the most conference paper sources, 
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accounting for over 60% of the sources, whereas Google 
Scholar has a diverse mix, including journal articles (41,7%) 
and conference papers (58,3%). IEEE Xplore has the most 
conference papers (75%), highlighting its emphasis on 
conference proceedings. In contrast, Elsevier has the most 
journal articles (60%), reflecting its focus on more established, 
peer-reviewed content. Overall, conference papers are the most 
common publication type across these sources, reflecting their 
importance in disseminating research in ontology learning and 
deep learning applications. 

 

 
Fig. 3.  Publication types and sources. 

B. Contribution Types and Research Approaches (RQ2) 

As illustrated in Figure 4, the distribution of contributions 
by type is as follows: 53% focus on methods/methodology, 
making it the most dominant category, followed by frameworks 
at 22%, reflecting their importance in structuring solutions. 
Contributions related to algorithms account for 12%, whereas 
tools/software represent 8% of the total. Case 
studies/applications represent 5%, emphasizing the application 
of methods in specific contexts. In terms of empirical study 
methodologies, 76% of the studies are experimental studies, 
demonstrating the field's strong reliance on empirical testing to 
validate new methods and frameworks. Evaluation studies 
account for 12% and focus on assessing the clinical utility of 
specific contributions, particularly frameworks. Case studies 
account for 7%, highlighting the limited application-based 
research, whereas comparative studies also represent only 4%, 
highlighting an opportunity for future research to emphasize 
comparative analyses and practical implementation in real-
world contexts. 

C. Data Types Utilized (RQ3) 

Table IV indicates that most works focus on biomedical and 
clinical data (27%), as in [14] and [15], underlining the critical 
importance of high-quality ontology learning in the health and 
life sciences, where its impact can be significant. Textual 
corpora (18%), as in [16], and knowledge graphs (9%), as in 
[17], are also prominent, reflecting the reliance on structured 
and unstructured textual data for extracting and linking 
concepts. Multimedia data is another emerging trend (13%), 
showing that deep learning models can be extended to 
multimedia and other diverse data types, as in [18]. Similarly, 
domain-specific ontologies (13%) reflect the shift towards 
addressing more specific and different types of datasets, such 

as the studies in [19] and [20]. However, scholarly research 
data (7%) and geographic/environmental data (2%), such as the 
works in [21] and [22], are less frequently used, indicating 
opportunities for further exploration in these areas to broaden 
the application of ontology learning techniques. This 
distribution highlights the current areas of concentration and 
also indicates the possibility of increasing the breadth of the 
studies towards the areas that are currently minimal. 

 

 
Fig. 4.  Research methodologies and contribution types used in the 
selected studies. 

TABLE IV.  DATA TYPES USED IN THE SELECTED STUDIES 

Category Description Count 

Textual corpora 

Text data from various domains, including 
academic publications, textbooks, specialized 
professional materials, and read-write news. 
This category includes general text mining 
sources for Natural Language Processing 

(NLP) and ontology learning 

10 

Biomedical and 
clinical data 

Data specific to the biomedical and clinical 
domains, including gene expression data, drug 

interactions, clinical text, and biomedical 
ontologies. These datasets are primarily used 
for medical and biological ontology learning 

and classification tasks 

14 

Knowledge 
graphs 

Graph-based datasets such as WordNet, 
Freebase, and ConceptNet, that represent 
structured knowledge and relationships 

between entities, often used for ontology 
population and extension 

4 

Multimedia 
data 

Non-textual data such as images, social media 
content, and tabular data. This includes data 

such as gene expression images, social images 
from Facebook, and event logs 

7 

Domain-
specific 

ontologies 

Customized ontologies for specific domains, 
such as chemistry, agriculture, finance, and 

information security, that form the foundation 
for domain-specific ontology enhancement and 

population 

7 

Scholarly and 
research data 

Academic publications and research articles 
used to extract concepts, classify information, 

and build scholarly ontologies 
4 

Geographic and 
environmental 

data 

Geographic information and tabular 
information about environmental events, 
ontologies, and HTML pages containing 

geographic information 

1 



Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 20085-20094 20089  
 

www.etasr.com Amalki et al.: Deep Learning-Driven Ontology Learning: A Systematic Mapping Study 

 

D. Deep Learning Techniques Applied to Ontology Learning 
(RQ4) 

Figure 5 shows that most studies favor transformer-based 
models (12) and CNNs (11), highlighting their dominance in 
deep learning for ontology learning. These models' versatility 
and advanced capabilities in NLP, as in [23] and [24], and 
image-based tasks, as in [18], make them essential tools in the 
field. RNN and its types, including LSTM and Gated Recurrent 
Unit (GRU), also show promising use (9 studies), as the studies 
in [25] and [26], which can be related to the applicability of the 
technique to capture sequential data and text-related tasks. 
Graph-based models (5 studies) show a converging trend 
towards incorporating structured knowledge into deep learning 
techniques, mainly GNNs and knowledge graph embedding, as 
in the studies in [19] and [27]. Meanwhile, ensemble & hybrid 
models, as in [28], and LLMs, as in [9], used in 5 studies each, 
highlight their emerging importance in merging different 
architectures and leveraging large-scale language models for 
improved performance. Contextualized embedding models, 
such as Embeddings from Language Models (ELMo) and 
Universal Sentence Encoder (USE), appear less frequently (2 
studies, [14] and [29]), as newer transformer models may be 
replacing them. Other techniques, including specialized models 
such as Generative Adversarial Networks (GANs), as in [30], 
and contrastive learning, as in [31], account for 2 studies, 
suggesting that while less common, they offer unique 
capabilities that complement mainstream methods. 

 

 
Fig. 5.  Deep learning techniques used in the selected studies. 

Likewise, Table V shows that the most commonly used 
RNN techniques are Bi-LSTM and LSTM, indicating a 
preference for using models that can handle dependencies and 
long contexts. Other uses of RNNs, such as GRU, Bi-GRU, 
and the encoder-decoder architecture are evident, but their use 
is not as common. Table VI shows that CNNs and their 
variants such as Convolutional Denoising Autoencoders 
(CDAE), Graph Convolutional Networks (GCN), and 
particular structures like AlexNet, LeNet, Google Net, and 
VGG19 are widely used. This is due to the versatility and 
resilience of CNNs in a variety of problems, including data in 
image and graph forms. The even distribution among different 

models implies the application of the convolutional operation 
regardless of the problem type as structures (GCNs) or visions. 

TABLE V.  RNN MODELS USED IN THE SELECTED STUDIES 

Technique used Count of studies 

Bi-LSTM 4 
LSTM 2 

Bi-GRU 1 
GRU 2 
RNN 1 

Encoder-Decoder Architecture 1 

TABLE VI.  CNN MODELS USED IN THE SELECTED STUDIES 

Technique used Count of studies 

CNN 5 
CDAE 2 
GCN 2 

AlexNet, LeNet, GoogleNet, VGG19 2 

 
Transformer-based models are the most common, as shown 

in Table VII, with models such as BERT, the GPT series, and 
others such as RoBERTa and ChatGPT being frequently used. 
The dominance of these models indicates a trend toward 
leveraging transformer architectures for their ability to 
efficiently handle complex NLP tasks. The variety of models 
suggests that both encoder-only (BERT) and decoder-only 
(GPT series) architectures are crucial for ontology learning and 
NLP applications. 

TABLE VII.  TRANSFORMER BASED MODELS USED IN THE 
SELECTED STUDIES 

Technique used Count of studies 

BERT 5 
GPT series (GPT-3, GPT-4) 3 

RoBERTa 2 
ELECTRA 1 

Transformer-based architectures 1 
Triplet-BERT 1 

FLAN-T5 1 
BLOOM 1 
ChatGPT 1 
Llama 2 1 

 
As shown in Table VIII, the use of graph-based models is 

moderate, as GNN, GCN, and Knowledge Graph Embeddings 
(KGE) imply the importance of structural and relational 
knowledge for deep learning. This has been done through 
models like Node2Vec and Neural Tensor Networks (NTNs), 
highlighting the efforts made in placing graph-based 
relationships and modeling them appropriately. The diversity in 
the use of graph models presented in this study reveals that 
structure and relationships are such features that are important 
for the task, even though graphs are used less frequently than 
text and images. As indicated in Table IX, contextualized 
embedding models are the least used with only two techniques, 
ELMo and USE. This may be partly due to the fact that newer 
transformer models, which offer better contextualized 
embeddings, are used more frequently than these earlier deep 
learning methods. Nevertheless, these models are still valued 
for their ability to generate word and sentence embeddings in 
specific contexts. 
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TABLE VIII.  GRAPH BASED MODELS USED IN THE 
SELECTED STUDIES 

Technique used Count of studies 

GNN 2 
GCN 2 
KGE 2 
NTN 1 

Node2Vec 1 

TABLE IX.  CONTEXTUALIZED EMBEDDING MODELS USED 
IN THE SELECTED STUDIES 

Technique used Count of studies 

ELMo 2 
USE 1 

 
Table X shows that techniques such as Multilayer 

Perceptron (MLP), autoencoders, and Siamese Neural 
Networks (SNNs) suggest a combination of approaches to 
improve performance. The use of the ensemble learning 
methods indicates that the application of multiple models can 
be considered as a technique to achieve high accuracy and 
adaptability in deep learning applications. The use of hybrid 
models highlights efforts to integrate diverse architectures for 
specialized tasks. Table XI demonstrates that models such as 
GPT-3.5, GPT-4, and others indicate an increasing trend in the 
application of LLMs in the field. Ontology development and 
NLP are some of the works to which these models are applied. 
Their relatively high count suggests that LLMs are becoming 
increasingly relevant for complex text generation and 
classification tasks, highlighting a shift towards the use of more 
generalizable, large-scale models. As shown in Table XII, 
features specialized models such as GANs and non-standard 
methods such as contrastive learning may have their 
advantages, but are less widely used than standard deep 
learning. 

TABLE X.  ENSEMBLE AND HYBRID MODELS USED IN THE 
SELECTED STUDIES 

Technique used Count of studies 

Stacking Ensemble Learning 1 
Neural Ranker 1 

MLP 2 
Autoencoders 1 

SNN 1 

TABLE XI.  LLMS USED IN THE SELECTED STUDIES 

Technique used Count of studies 

GPT-3.5 2 
GPT-4 1 

Claude 3 Sonnet 1 
Retrieval-Augmented Generation (RAG) 1 

Mixtral 8x7B 1 
LLMs 1 

Ontology Development Kit (ODK) 1 

TABLE XII.  OTHER DEEP LEARNING TECHNIQUES USED IN 
THE SELECTED STUDIES 

Technique used Count of studies 

GAN 1 
Contrastive Learning 1 

 

E. Ontology Learning Tasks and Domains (RQ5) 

Figure 6 shows that the most frequent task with 31.3% is 
ontology construction, as in [32] and [33], which would mean 
that in this dataset most of the works are focused on building 
the structure of the ontologies. It is followed by the task of 
ontology enrichment, as in [31] and [28], with 20.8%, which 
puts emphasis on the refinement and extension processes of 
already developed ontologies to make them more functional. 
Ontology population comes in third place with 12.5%, as in 
[26] and [34], which emphasizes that such structures actually 
need to be filled with information if they are ever to become 
useful. Less frequent activities are ontology annotation (8.3%) 
as in [35], ontology extension (6.3%) as in [36], and ontology 
matching (6.3%) as in [37], indicating that these are 
complementary and specialized activities. The lower figures for 
ontology embedding as in [30], knowledge graph completion as 
in [17], and ontology classification as in [15], all at 4.2%, 
indicate a representative emergent intersection with advanced 
AI methods. The least frequent activity is ontology 
subsumption prediction as in [24], at 2.1%, suggesting that this 
is a niche area. Overall, the distribution emphasizes the 
importance of building and enriching ontological frameworks, 
with other tasks supporting the development and application of 
these structures. 

 

 
Fig. 6.  Ontology learning tasks in the selected studies. 

Similarly, Figure 7 shows that the most frequent subtasks of 
all ontology learning tasks are term extraction, relation 
extraction, and ontology refinement, representing their core 
position in the ontology learning process. For instance, term 
extraction is especially dominant in ontology construction 
(25.5%) and ontology annotation (40.0%) tasks, confirming its 
crucial role in the development of ontological frameworks. On 
the other hand, there are refined tasks, namely ontology 
matching and ontology extension, which contain subtasks, 
namely similarity feature construction and axiom learning, 
suggesting a higher degree of specialization of certain tasks. 
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Overall, the distribution shows a strong focus on basic 
activities that form the basis for ontology creation and 
refinement, with specialized higher-order techniques used in a 
subset of tasks. 

 

 
Fig. 7.  Ontology learning tasks and subtasks used in the selected studies. 

Figure 8 shows that the most common domain where the 
ontology learning applications have been applied is the 
biomedical and healthcare domain, as in the works in [38] and 
[14], since 25.0% of the studies belong to this domain. This 
indicates a critical need for better structured understanding and 
improved ontological content in the medical and healthcare 
context, in line with the previously discussed ontology creation 
and enhancement. 

 

 
Fig. 8.  Distribution of domains in the studied ontology learning 
applications. 

The category of knowledge graphs and semantic web such 
as the studies in [17] and [37], with 18.8%, underlines the 
importance of developing and enriching general and multi-
domain knowledge structures, according to tasks such as 
ontology population and enrichment, intended for building and 
managing various information sources. The field of 
bioinformatics, with 10.4%, supports this trend of focusing on 
biological and life sciences, and represents a substantial 
connection of ontology learning with state-of-the-art AI 
techniques within these domains, as in the study in [39]. 
Smaller categories, such as chemistry with 6.3% as in [23], 
information retrieval and systems also with 6.3% as in [40], 
and education with 4.2% as in [33] emphasize the narrower but 

emerging applications in these domains. The category of other 
domains (9 domains), with a total of 29.2%, really 
demonstrates not only the breadth but also the versatility of 
ontology learning in capturing the diverse range of niche and 
emerging fields like cybersecurity as in [34], finance as in [20], 
and legal as in [41], where structured knowledge representation 
is increasingly valuable. Overall, this distribution underlines 
the predominance of biomedical applications, but also shows 
the penetration of ontology learning techniques beyond this 
domain into various other domains. 

F. Evaluation Metrics and Benchmarks Employed (RQ6) 

Precision, recall, and F1 score remain among the most 
popular evaluation metrics across a range of ontology learning 
tasks, including ontology construction, ontology population, 
and ontology enrichment, as shown in Table XIII. This not 
only indicates their central role in evaluating the accuracy and 
relevance of ontology elements, but also probably points to 
serious limitations of related research work. Specific tasks like 
ontology classification and knowledge graph completion 
involve more metrics such as Accuracy, Mean Reciprocal Rank 
(MRR) as in the work in [14], and Hits@K as in [24], since 
ranking performance and classification accuracy need to be 
evaluated in these contexts. Specific tasks also involve special, 
task-specific measures, for example, ontology construction 
involves the structural measures of Relationship Richness (RR) 
and Link Richness (LR) as in [16], while ontology matching 
involves statistical hypothesis testing and similarity feature 
construction to address the complexity of matching processes 
as in [42]. This indicates that while there is a core set of 
common metrics to ensure consistency, some tasks require 
specialized evaluation measures to capture the distinct aspects 
of their processes, suggesting a balance between 
standardization and task-specific adaptability in ontology 
learning evaluation practices. 

TABLE XIII.  EVALUATION METRICS USED IN THE 
SELECTED STUDIES 

Task Common Metrics Task-Specific Metrics 

Ontology construction Precision, Recall, F1 
RR, AR, LR, Formula 

correctness 
Ontology annotation Precision, Recall, F1 Jaccard similarity 

Knowledge graph 
completion 

Accuracy, MRR, 
Hits@K 

Triple accuracy, 
Improvement % 

Ontology 
classification 

Accuracy, AUC - 

Ontology population 
Precision, Recall, F1, 

mAP 
Link classification 

Ontology enrichment Precision, Recall, F1 Insertion rate, Top-k edges 

Ontology extension 
F1, Precision, Recall, 

AUC 
ROC-AUC 

Ontology matching 
Precision, Recall, 

Accuracy 
Hypothesis testing, 
Similarity features 

Ontology embedding 
Accuracy (Cosine, 

Euclidean) 
Harmonic mean, MRR, 

Hits@K 
Ontology 

subsumption 
MRR, Hits@K - 

 
Regarding the use of benchmarks within ontology learning, 

as shown in Table XIV, there is a sharp division: tasks in the 
biomedical and bioinformatics domains, such as ontology 
annotation and enrichment, uniformly depend on established 
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benchmarks, like Gene Ontology (GO) as in [43] and 
SNOMED CT as in [31]. This shows that mature evaluation 
practices are in place. Other tasks, such as ontology 
construction and ontology population, do not have standardized 
benchmarks, so variability can be seen. Various studies use 
multiple benchmarks due to the maturity of the domain, so that 
the evaluation can be comprehensive. Whereas some of these 
fields have standardized standards, others require further 
development for evaluation protocols to be consistently 
effective. 

TABLE XIV.  USE OF BENCHMARKS AND  LEVEL OF 
STANDARDIZATION IN THE SELECTED STUDIES 

Task Domain Benchmarks 
Standard

ization 

Ontology 
annotation 

Biomedical CRAFT, GO High 

Ontology 
enrichment 

Biomedical 
SNOMED CT, 

MedDRA 
High 

Knowledge graph 
completion 

General WordNet, Freebase High 

Ontology 
matching 

General OAEI High 

Ontology 
construction 

Various Custom / Not established Low 

Ontology 
population 

Various Custom / Not established Low 

Ontology 
embedding 

General BioPortal, WordNet Medium 

Ontology 
extension 

Biomedical/ 
chemical 

ChEBI, Disease 
ontology 

Medium 

 

IV. DISCUSSION 

The results of this study show a clear evolution in the field 
of ontology learning, driven by the advancement of AI 
technologies, especially since 2019 with the emergence of 
complex models such as transformers, GNNs and LLMs. At the 
same time, this growth highlights a number of challenges: first, 
the growing computational complexity that increases with the 
power of such models; second, the demand for domain-specific 
competency, especially in biomedical applications that 
dominate the field. Data sparsity remains an issue, as evidenced 
by the limited use of some domains, such as geographic and 
environmental data. The predominance of experimental studies 
and the reliance on empirical testing highlight the field's 
emphasis on practical validation. However, the absence of any 
kind of comparative and real-world case studies points to a gap 
that future research should fill in order to increase the 
applicability of the field. Expanding the application to more 
underrepresented domains such as finance, legal, and 
environmental sectors would serve to further increase the 
impact and applicability of ontology learning. 

Although the core metrics of precision, recall, and F1 score 
are the most important, especially for tasks like ontology 
construction and population, most of these research areas don't 
have established benchmarks. For instance, construction and 
population require standardization efforts. Additionally, as 
model complexity increases, the need for explainable AI 
approaches becomes crucial to ensure transparency and 
interpretability of results. Future work should focus on creating 

comprehensive benchmarks and providing clear evaluation 
protocols, especially for new and less standardized domains, so 
that applications of ontology learning remain reliable, 
explainable, and adaptable. 

V. CONCLUSION 

This study systematically maps the application of deep 
learning in ontology learning, exploring research trends, 
contribution types, and evaluation methods. It shows a rise in 
publications since 2019, reflecting the impact of the advent of 
sophisticated models such as transformers, Graph Neural 
Networks (GNNs) and Large Language Models (LLMs). The 
dominance of experimental and empirical approaches shows a 
primary concern in method development, whereas the 
prevalence of biomedical and healthcare domains underlines 
their priority in the field. However, the limited investigations 
observed in areas such as finance, legal, and the environmental 
contexts, as well as the minimal use of comparative studies, 
expose clear research gaps and areas that need to be addressed 
in future works. The research highlights the lack of 
standardization in ontology learning, especially in the areas of 
evaluation metrics and benchmarks, as inconsistencies were 
observed in tasks such as ontology construction and population. 
Future research should focus on creating more extensive and 
field-specific benchmarks, expanding applications to the 
lacking domains, and highlighting the explainability to improve 
trust and transparency. Practitioners and researchers can 
leverage these insights to refine their methodologies and 
practices to make ontology learning approaches flexible, 
reliable, and applicable in various domains. 
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