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ABSTRACT 

The Rotary Inverted Pendulum (RIP) system is a highly nonlinear and under-actuated mechanical system, 

which presents significant challenges for traditional control techniques. In recent years, Reinforcement 

Learning (RL) has emerged as a prominent nonlinear control technique, demonstrating efficacy in 

regulating systems exhibiting intricate dynamics and pronounced nonlinearity. This research presents a 

novel approach to the swing-up and balance control of the RIP system, employing a RL algorithm, Twin 

Delayed (TD3) Deep Deterministic Policy Gradient (DDPG), obviating the necessity for a predefined 

mathematical model. The physical model of the RIP was designed in SolidWorks and subsequently 

transferred to MATLAB Simscape and Simulink for the purpose of training the RL agent. The system was 

successfully trained to perform both swing-up and balance control using a single algorithm for both tasks, 

representing a significant innovation that eliminates the need for two or more separate algorithms. 

Additionally, the trained agent was successfully deployed onto an experimental model, with the results 

demonstrating the feasibility and effectiveness of the model-free TD3 approach in controlling under-

actuated mechanical systems with complex dynamics, such as the RIP. Furthermore, the results highlight 

the sim-to-real transfer capability of this method. 

Keywords-Rotary Inverted Pendulum (RIP); Reinforcement Learning (RL); twin delayed deep deterministic 

policy gradient; model-free control; swing-up control; balance control; solidworks; matlab; simscape; 

simulink 

I. INTRODUCTION  

The control of under-actuated mechanical systems has 
emerged as a vibrant field of research, driven by their extensive 
applications across a range of domains, including robotics, 
aerospace, and marine technology. This category includes a 
diverse range of devices, such as flexible-link robots, mobile 
robots, walking robots, vehicles on mobile platforms, cars, 
locomotives, snake-like and aquatic robots, acrobatic robots, 
aircraft, spacecraft, helicopters, satellites, surface vessels, and 
underwater vehicles. It is noteworthy that the pendulum is 
regarded as one of the most emblematic under-actuated 
mechanical systems, frequently serving as a benchmark for 
addressing a multitude of control issues [1]. The control of 
RIPs presents considerable challenges due to their intrinsic 
complexity and dynamic characteristics [2]. The development 
of control strategies for these systems has historically 

progressed from simple Proportional-Integral-Derivative (PID) 
control, state feedback control, and Linear Quadratic Regulator 
(LQR) to more advanced methods like H-infinity control and 
sliding [4-6], and finally to intelligent techniques [7]. 
Nevertheless, although these approaches are effective for 
systems that are well-modeled, their use is constrained in 
situations where obtaining precise system models is 
challenging or when the system dynamics exhibit high levels of 
nonlinearity and under actuation. To address these challenges, 
this research proposes a novel model-free approach for 
achieving swing-up and balance control in RIP using RL. 

In recent years, the application of RL techniques, especially 
Deep RL (DRL), has become increasingly important as a 
promising alternative for control tasks in complex dynamic 
systems without the need for explicit system models. This is 
evidenced by a growing body of literature on the subject [8-
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15]. In the context of RIP systems, several pioneering studies 
have examined the potential of DRL algorithms for swing-up 
and balance control [16-20]. To demonstrate the adaptability 
and learning capabilities of these algorithms, researchers have 
trained agents for swing-up control using DRL techniques 
within simulation environments. However, the majority of 
these studies required the use of at least two distinct algorithms 
within the system, one for the swing-up task and the other for 
balance control. Moreover, there have been few studies that 
have sought to examine the transferability of simulation-trained 
DRL agents into real-world experimental platforms for 
practical validation and implementation. This work employs 
the DRL technique, particularly the TD3 algorithm, to leverage 
the large system nonlinearity without requiring an a priori 
mathematical model of the underlying processes. The agent, 
which was trained through simulations, is tested in a real-time 
application of RIP to demonstrate its robustness and 
applicability. A further advantage of using a single algorithm 
for both swing-up and balance control is the simplicity this 
affords. By employing a single optimization process, several 
features can be disabled, thus avoiding the potential for internal 
conflict between different algorithms. A unified approach has 
the additional benefit of reducing the complexity of 
implementation, the computational burden, and the overall 
efficiency of the control system. This study contributes to the 
advancement of control engineering by demonstrating a 
scalable and effective methodology for swing-up and balance 
control. The feasibility and effectiveness of the model-free 
DRL approach are demonstrated, thereby proving its potential 
for real-world implementation and cost-effective system 
optimization. 

II. BACKGROUND 

A. Reinforcement Learning 

RL is a machine learning approach whereby an agent 
(controller) learns to make decisions by interacting with an 
environment, with the objective of maximizing cumulative 
rewards (feedback). It operates on the principles of Markov 
Decision Processes (MDPs), which entail the consideration of 
the following elements: the space of possible states X, the space 
of possible actions U, transition probability P, reward function 
R, and a discount factor γ [21]. As shown in Figure 1, the MDP 
framework demonstrates the interaction between the agent and 
the environment during the decision-making process. 

 

 
Fig. 1.  The MDP framework in RL. 

At each time step �, the agent observes the current state of 
the environment, represented as ��. Based on this observation, 
the agent chooses an action �� ∈ �, forming the state-action 
pair ��� , ��	 . In the subsequent time step, � 
 1 , the 
environment transitions to a new state ��� ∈ �, and the agent 
receives a reward ��� ∈ �  for the action ��  taken from the 
state ��. The agent’s goal is to find an optimal policy �∗ that 
maximizes the expected return from any initial state ��, defined 
as: ���	 � ��∑ ����|�∞��� �   (1) 

with a discount factor � ∈ �0,1	  representing the difference 
between future rewards and immediate rewards and the 
expectation � is taken over the stochastic process induced by 
the policy � and the environment dynamics. 

Two fundamental concepts in RL are the state-value 
function � ��	 and the action-value function ! ��, �	. These 
functions represent the expected return starting from state � 
and action �, respectively, under a given policy �. The state-
value function is defined as: � ��	 � � �∑ ����|�� � �∞��� �  (2) 

The action-value function is defined as: ! ��, �	 � � �∑ ����|�� � �, �� � �∞��� � (3) 

The optimal value functions, �∗��	 and !∗��, �	, represent 
the maximum expected cumulative reward that can be achieved 
by following the optimal policy �∗  and satisfy the Bellman 
optimality equations: �∗��	 � "#�$ �����, �	 
 ��∗��′	|�, ��!∗��, �	 �� %���, �	 
 �"#�$′ !∗��′, �′	|�, �&   (4) 

In policy gradient methods, the policy ���, �; (	  is 
parameterized by a set of parameters ( . The goal is to 
maximize the expected return ���)	 . The gradient of the 
objective function with respect to ( is given by: *)���)	 � �+~-./ ,$~ /�*) 012 �) ��|�	! /��, �	� (5) 

where 3 /  represents the state visitation distribution under 
policy �) . Actor-Critic methods combine value-based and 
policy-based approaches. The actor updates the policy 
parameters (  based on feedback from the critic, which 
estimates the value function. The policy is updated using the 
gradient: *)��(	 � �4*) 012 �) ��|�	!5��, �	6  (6) 

where !5��, �	 is the action-value function parameterized by 7. The critic is updated by minimizing the Bellman error: 8�7	 � � 9:!5��, �	 ; <� 
 �!5��′, �′	=>?@ (7) 

B. Twin Delayed Deep Deterministic Policy Gradient 

TD3 is an advanced algorithm within the actor-critic 
family, specifically designed to handle environments with 
continuous action spaces [22]. It builds upon its predecessor, 
the DDPG algorithm [23], addressing overestimation bias and 
enhancing stability in the learning process. The DDPG extends 
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RL to continuous action spaces, using an actor-critic 
architecture where the actor A)��	  outputs deterministic 
actions given the state �, and the critic !5��, �	 evaluates these 
actions. The actor is updated using: *)��(	 � �+~B4*$!5��, �	|$�C/�+	*)A)��	6 (8) 

where D  is the reply buffer. The critic is updated by 
minimizing: 8�7	 � ��+,$,E,+′	~B %F!5��, �	 ; GH?&  (9) 

with the target value: G � � 
 �!5′F�′, A)′��′	H   (10) 

TD3 algorithm builds upon DDPG, introducing 
enhancements such as clipped double Q-learning, delayed 
policy updates, and target policy smoothing to address issues 
like overestimation bias and instability. TD3 employs two critic 
networks !5I��, �	, !5J��, �	 and uses the minimum Q-value 
to form the target: G � � 
 �"KLM�,?!5′NF�′, A)′��′	H   (11) 

TD3 introduces target policy smoothing to address the issue 
of deterministic policies that can lead to high variance in Q-
value estimates. To smooth the target policy, TD3 adds noise to 
the action produced by the target policy network: AO��′	 � A)′��′	 
 P    (12) 

where A)Q��′	  is the action suggested by the target policy 
network, and P  is noise sampled from a clipped Gaussian 
distribution: P~clip�W�0, X	, ;Y, Y	    (13) 

where X  is the standard deviation of the noise and Y  is a 
clipping constant. In TD3, the target networks for both the 
policy and the critics are updated using a soft update 
mechanism. This gradual update approach ensures that the 
target networks change slowly, which contributes to the 
stability of the training process: 7′M ← [7M 
 �1 ; [	7′M(′ ← [( 
 �1 ; [	(′ (14) 

where [ is a small constant that controls the rate of the update. 

These enhancements make the TD3 algorithm more robust 
and effective for continuous action spaces, addressing key 
limitations of the DDPG algorithm and improving its 
performance in complex control tasks, such as the swing-up 
and balancing control of a RIP. 

III. SYSTEM MODELLING AND PROPOSED 
METHODOLOGY 

A. System Modelling 

Figures 2 and 3 present the Computer-Aided Design (CAD) 
model of the RIP system, which was designed using the 
SolidWorks software. The system comprises a rotary arm and a 
pendulum. The rotary servo unit, driven by a Direct Current 
(DC) motor, enables rotational movement at one end. An 
encoder is affixed to the DC motor, serving to quantify the 

angular displacement of the rotary arm. Another encoder is 
positioned to monitor the angular position of the pendulum. 
The lengths of the rotary arm and pendulum are denoted as 8 
and 8? . The pendulum angle \  ranges from �;�, ��  radians, 
with \ � 0  radians indicating the upright position of the 

pendulum. The arm angle (  is constrained within %;  ] ,  ]& 
radians, with ( � 0 radians representing the arm in the central 
position. Angular velocities are denoted by _̂  and (_  radians per 
second. Table I provides a concise summary of the system 
components, along with their respective materials and mass. 

 

 
Fig. 2.  Modelling of RIP: CAD model on Solidworks (left), RIP scheme 
(right). 

 
Fig. 3.  RIP components on Solidworks. 

TABLE I.  SYSTEM COMPONENT DESCRIPTION 

Nr. 
RIP Components 

Part Material / Parameter Mass [g] / Value 

1 Base Shaped aluminum 352.77 
2 Rid flange coupling Stainless steel 27.60 
3 Encoder Library part 79.57 
4 Bearing Stainless steel 4.61 
5 Coupling Aluminum 8.41 
6 Encoder mounting PLA 3D printing 90.53 
7 Pendulum Aluminum 51.38 
8 Motor Motor resistance 6.8357 Ω 
9 Motor Torque constant 0.0649 Nm/A 
10 Motor Motor Inductance 0.2509 H 
11 Motor Back EMF constant 0.06494 V/rad/s 
12 Motor Shaft inertia 0.00013 kgm? 

13 Bearing 
Viscous friction torque 

of arm 
0.001 Nm/rad/s 

14 Bearing 
Viscous damping of 

pendulum 
0.001 Nm/rad/s 
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As shown in Figure 4, the RIP model is then transferred to 
MATLAB Simscape. This modeling process employs the 
Simulink Simscape toolbox, incorporating essential 
components such as the DC motor, mechanical joints, and 
transformation blocks to capture the dynamic behavior of the 
system. The simulation commences with the control voltage 
source block, which is directly connected to the DC motor 
block. The motor is operated within a voltage range of -24 V to 
24 V. The motor output is expressed in terms of angular 
velocity and angular position, which serve as the input to a 
rotational multibody interface block. This block serves as an 
interface between the Simscape Multibody joint and the 
Simscape mechanical rotational system, facilitating the 
assembly of the mechanical components. The primary outputs 
from this interface are mechanical rotational torque and angular 
velocity, which drive revolute joint 1. This joint connects the 

DC motor to the rotary arm, enabling motion. The rotary arm is 
coupled to the pendulum through a reversible connection at the 
frame ports, which negates the transformation. During 
simulation, these frames remain attached to each other, 
functioning as a unified system. The model tracks two key 
outputs: the position ( for the rotary arm, \ for the pendulum 
and their respective angular velocities ( (_ , \_ ). These 
measurements are vital for analyzing the dynamic response of 
the system during operation. A configuration block manages 
uniform gravity �� � 0, G � 0, a � ;9.8665�  and includes 
solver and mechanism settings. The simulation is driven by 
‘ode23t’ solver. This approach captures the complex 
interactions of the system while maintaining computational 
efficiency, providing a realistic representation of the RIP’s 
dynamics. 

 

(a) 

(b) 

 

Fig. 4.  RIP physical modelling in MATLAB Simscape: (a) overview, (b) inside view. 

B. TD3 Algorithm Training Methodology 

1) Observation 

The RIP state is the vector � ∈ ℝg is composed of 4 states 
variables: � � �( (_ \ \_ �h    (15) 

To compute the observation, we use sine and cosine 
functions to capture variations in the deflection angle. This 
method simplifies the analysis of oscillatory and rotational 
mechanisms, helping to determine the system’s vibrational 
characteristics. Additionally, the control action from the 
previous time step is added, resulting in 1��	 ∈ ℝi , (15) 
becoming: 1���	 ��jKL (� Y1j (� (_� jKL \� Y1j \� \_ � ��k� (16) 

2) Agent Action 

The agent’s action |��| l 1 is scaled to the motor voltage 
(in direct current – DC) within the environment. It is then 
multiplied by �mnopEnq � 24 to provide the control voltage to 
the DC motor, which generates force to move the arm in either 
direction. 

3) Reward Function 

Referring to the LQR cost function, the reward function at 
each time step � is given by: ����	 � ∑ ���h!�� 
 �t��t	∞���   (17) 

where the control vector �t � ���k ��k ; ��k?�h  and the 
weight matrices ! and � as follows: 

! � u^ 0 0 00 ^? 0 00 0 ^] 00 0 0 ^g
v , � � w^x 0

0 ^y
z  (18) 

By additional the {� value, acting as the baseline reward: 
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max max1 if  and 

0 otherwise
k k

kP
     

 


ɺ ɺ

  (19) 

The reward function can be presented in detail: 
�� � {� ; F^(�? 
 ^?\�? 
 ^](_�? 
 ^g\_ �? 
 ^x��k? 


^y���k ; ��k?	?H    (20) 

The matrices (18) indicate the relative importance and 
priority of each state component in influencing the system's 
performance and learning behavior. The ability to adjust these 
weights allows for a targeted focus on specific states, thereby 
influencing the optimization process in RL or autonomous 
control systems. The reward function represents a negative cost 
with a baseline reward and is constituted of five component 
terms: 

 Deviations from the forward position of the motor arm (�?. 

 Deviations from the inverted position of the pendulum \�?. 

 The angular speed of the motor arm (_�?. 

 The angular speed of the pendulum \_ �?. 

 Changes in the control action ��k?  and ���k ; ��k?	?. 

4) Critic Network 

In order to model the parameterized Q-value function 
within the critic, it is necessary to conduct the neural network 
with the following structure: The input layers comprise a single 
unit for the observation vector and a separate unit for the action 
vector. The hidden layers comprise two layers with 64 neurons 
each, with Rectified Linear Unit (ReLU) activation functions. 
The output layer generates a scalar value for the state-action 
pair. The structure of the two critic networks is presented in 
Figure 5. 

5) Actor Network 

A neural network is employed with a single input layer for 
the observation vector and a single output layer that generates 
actions for the environment's action channel. The network 
comprises two hidden layers, each comprising 64 neurons and 
employing the ReLU activation function. The structure of the 
actor network is shown in Figure 6. 

 

 
Fig. 5.  The structure of the two critic networks. 

 
Fig. 6.  The structure of the actor network. 

6) Training Environment 

A training environment is created with a Simulink model, 
shown in Figure 7, allowing for interaction between the agent 
and physical model. The environmental interface is defined as: 

 Agent Block: Specifies the agent object created in the 
MATLAB workspace using RL toolbox functions. 

 Generate RL Signals Subsystem: Produces the observation 
signal, reward function, and ‘isDone’ signal for the agent. 

RIP Subsystem: Contains the system in the Simscape 
model. 

 

 
Fig. 7.  Simulink environment for training RIPS. 

7) Training Parameters 

The configuration of the TD3 agent specifies various 
parameters crucial for the training process shown in Table II. 

8) Reset Function 

A reset function is designed to reset the environment to its 
initial state before starting a new episode while training: 

function localResetFcn(input) 

theta_init = -π/4 + random() * π/2 

phi_int = π - π/4 + random() * π/2 

setVariable(input, "theta_int", theta_int) 

setVariable(input, "phi_int", phi_int) 

setVariable(input, "dtheta_int", 0) 

setVariable(input, "dphi_int", 0) 

return input 

end function 

 



Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 19316-19323 19321  
 

www.etasr.com Ho & Nguyen: Model-Free Swing-Up and Balance Control of a Rotary Inverted Pendulum using … 

 

TABLE II.  TRAINING PARAMETERS 

Agent Parameters 

Parameter Description Value |} Sample time 0.005 seconds |~ Length of each episode 5 seconds 
Buffer Length Size of the experience replay buffer 10y 

Mini Batch Size 
Number of samples in each mini 

batch 
128 

Learning Freq Policy update frequency 1 

Mini Batch 
Number of mini batches processed 

per training epoch 
1 

Actor LearnRate 
Learning rate for the actor network 

optimizer 
10kg 

Actor GradThresh 
Gradient threshold for the actor 

network optimizer 
1 

Critic1 LearnRate 
Learning rate for the first critic 

network optimizer 
10k] 

Critic1 GradThresh 
Gradient threshold for the first critic 

network optimizer 
1 

Critic2 LearnRate 
Learning rate for the second critic 

network optimizer 
10k] 

Critic2 GradThresh 
Gradient threshold for the second 

critic network optimizer 
1 

Max Episodes 
Maximum number of episodes for 

training 
1,000 

Window Length 
Window size for averaging the score 

to evaluate progress 
10 

Stopping Criteria 
Training stops when the average 
reward surpasses this threshold 

860 

 

IV. SIMULATION AND EXPERIMENTAL RESULTS 

A. Training Reward Value 

As presented in Figure 8, the TD3 algorithm exhibited 
convergence of the reward value after approximately 200 
episodes, reaching the desired performance level by the 400th 
episode. This outcome was achieved through the usage of the 
MATLAB RL Toolbox. At this juncture, the agent successfully 
completed the swing-up task and maintained the pendulum in 
an upright position with minimal control effort. The training 
was terminated at an average reward value of 860. 

B. Simulation Results 

The output responses for the RIP are presented in Figures 9 
and 10, with the input control shown in Figure 11. 

 
Fig. 8.  Reward value curve. 

 
Fig. 9.  Pendulum angular position while swing-up and balancing. 

 
Fig. 10.  Arm angular position while swing-up and balancing. 

 
Fig. 11.  Control input while swing-up and balancing. 

he performance of the pendulum control system, shown in 
Table III, is characterized by a high degree of precision, as 
evidenced by a Root-Mean-Square Error (RMSE) of 9×10−4. 
This value reflects a minimal average deviation from the 
desired angle, demonstrating the system's ability to maintain 
the pendulum's position with remarkable accuracy. This also 
indicates excellent control accuracy, given the very low 
percentage overshoot of 0.50%. The arm exhibits suboptimal 
performance with regard to its position, as evidenced by an 
RMSE of 0.1828, which reflects a larger-than-desirable 
average error in maintaining its position. The arm exhibits a 
considerable overshoot of 27.56%, which underscores the 
necessity for more precise control adjustments in the weight of 
the θ variable in the Q matrix (18). The time required for the 
pendulum to complete one full swing is 2.24 seconds, which is 
an acceptable duration. In conclusion, despite the robust nature 
of the pendulum control system, the arm's performance 
indicates the necessity for enhancements aimed at minimizing 
overshoot and attaining a more stable and precise control 
system. 
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TABLE III.  CONTROL PERFORMANCE 

Parameter 

Evaluating Components 

Arm section 
Pendulum 

section 
Description 

RMSE 0.1823 9 � 10kg 
Root means squared error after 

swung-up 

Swing-Up 
Time 

- 2.24 seconds 
Time when the pendulum angle 

remains below a threshold of 0.2 
radians for at least 1 second 

Overshoot 27.56 % 0.50 % 
Percentage overshoot of the 
pendulum after swung-up 

 

C. Experimental Results 

An experimental model was constructed for the purpose of 
evaluating the performance of the agent, as shown in Figure 12. 
The experimental response of the RIP is presented in Figures 
13 and 14, respectively.  

 

 
Fig. 12.  RIP model in experimental: front (left) and side views (right). 

 
Fig. 13.  Pendulum angular position while swing-up and balancing in 
experimental. 

 
Fig. 14.  Arm angular position while swing-up and balancing. 

The system exhibits successful swing-up and balancing, 
thereby confirming the effectiveness of the control strategy. 
The controller effectively maneuvers the pendulum from its 
initial state to a balanced position, thereby further validating 
the robustness of the TD3-based approach. The response plots 
of the experiments demonstrate that the TD3 agent consistently 
meets the performance goals, and that the agent is stable once 
the pendulum attains an upright position. The minor 
oscillations observed around the equilibrium point, the 
extended time taken by the swing-up (2.5 seconds compared to 
the 2.24 seconds of the pendulum), and the larger variations of 
the arm angle with respect to the physical model from the 
simulation indicate that practical variables like environmental 
perturbations, such as the evenness of the table surface on 
which the robot operates, power dissipation within the power 
supply and motor, encoder signal noises, limits created due to 
the manual fabrication process, and differences in 3D printing 
of the model introduce errors that result in a deterioration of 
performance. 

V. CONCLUSIONS 

The implementation of Twin Delayed (TD3) Deep 
Deterministic Policy Gradient (DDPG) for the regulation of the 
Rotary Inverted Pendulum (RIP) has demonstrated 
considerable promise. The simulation results demonstrate the 
efficacy of the TD3 algorithm in facilitating the efficient 
completion of the swing-up maneuver and stabilization of the 
RIP. Following a brief oscillatory phase, the pendulum attains 
and maintains an upright position throughout the remainder of 
the simulation. Similarly, the angular position of the arm 
demonstrates a rapid stabilization following initial 
perturbations, reflecting the high degree of precision in control. 
Nevertheless, the occurrence of oscillations around the 
equilibrium during experimentation may necessitate the 
implementation of online retraining of the agent, with the 
objective of enhancing its resilience against experimental 
uncertainties. These practical complications underscore the 
vital importance of model-free methodologies. While most 
theoretical mathematical models assume optimal conditions 
and frameworks, model-free approaches like TD3 offer 
significant advantages in accommodating the imperfections and 
uncertainties that arise in real-world scenarios, which are often 
unavoidable. This adaptation is crucial for attaining consistent 
performance in practical circumstances, where deviations from 
idealized models are pervasive and often unavoidable. The 
results confirm that TD3 is one of the most promising model-
free approaches and single-agent solution capable of effectively 
handling both swing-up and stabilization tasks. Consequently, 
there is no need to develop a complicated mathematical model 
of the system. The TD3 algorithm learns through direct 
interaction with the environment, enabling it to perform the 
swing-up and stabilization tasks in the absence of a well-
defined system model. 

Concurrently, this study presents a novel application of 
TD3 to a highly complex nonlinear system such as RIP, 
eliminating the necessity for prerequisite mathematical 
modeling. In contrast with conventional methodologies reliant 
on system identification, TD3 employs a reinforcement-based 
learning approach, whereby the system interacts with its 
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environment to refine its internal representation. Furthermore, 
this work extends TD3 toward the solution of both swing-up 
and stabilization tasks simultaneously, a domain that has not 
been widely explored within the field of model-free control 
methods. This study highlights the superiority of TD3 in 
reducing training time in comparison to other algorithms, such 
as Deep Deterministic Policy Gradient (DDPG) and Policy 
Proximal Optimization (PPO), where only a single agent is 
capable of executing both tasks. This represents a significant 
advantage over other methods, which often necessitate the use 
of multiple agents or a combined strategy to effectively address 
complex tasks. This approach, therefore, demonstrates the 
flexibility and sensitivity of TD3 when dealing with such 
complex nonlinear systems as the RIP, extending its 
application for model-free reinforcement learning to a broader 
class of dynamic control frameworks. 
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