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ABSTRACT 

With the increasing demand for reliable and efficient V2X (Vehicle-to-Everything) communications in 

cognitive radio environments, spectrum sharing becomes imperative. In this context, accurate modulation 

classification serves as a fundamental component for efficient spectrum sensing and allocation. This paper 

proposes a novel approach utilizing Convolutional Neural Networks (CNNs) trained on spectrograms of 

BPSK and QPSK modulation schemes for automatic modulation classification in V2X scenarios. 

Experimental results demonstrated the effectiveness of the proposed CNN-based framework in accurately 

classifying modulation schemes in V2X communications. 

Keywords-automatic modulation classification; cognitive radio; BPSK; QPSK; CNN; Alexnet; V2X 

I. INTRODUCTION  

The rise of cognitive radio and connected cars has created a 
need for reliable and efficient wireless communication systems. 
One key challenge in these systems is Automatic Modulation 
Classification (AMC), which involves identifying the 
modulation scheme used to transmit signals over a wireless 
channel. Traditional approaches to AMC have limitations, 
particularly in dealing with varying channel conditions and 
multiple modulation schemes [1, 2]. Deep Learning (DL) [3] 
has shown promising results in improving AMC performance, 
particularly in the presence of channel impairments. DL is a 
subset of machine learning that involves training artificial 
neural networks to learn and make predictions on complex data 
[4, 5]. DL models can effectively learn the underlying 
characteristics of radio signals for modulation pattern 

recognition, leading to improved classification performance [6, 
7]. In cognitive radio systems, where the available spectrum is 
dynamically allocated based on real-time demand, DL-based 
AMC can improve spectrum utilization [8, 9] and reduce 
interference. Similarly, in connected cars, where reliable 
communication is critical to safety and performance, DL-based 
AMC can improve signal quality and reduce latency. Recent 
research has explored DL-based AMC approaches in both 
cognitive radio and connected cars with promising results. 
Recent studies have proposed DL-based AMC methods using 
Convolutional Neural Networks (CNNs) to classify signals in 
cognitive radio networks with dynamic spectrum access. Other 
studies have proposed DL-based AMC methods using a hybrid 
CNN-Recurrent Neural Network (RNN) approach for 
connected cars [10, 11]. Overall, DL-based AMC has the 
potential to improve wireless communication systems in 
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cognitive radio and connected car applications, leading to more 
reliable and efficient performance.  

II. MATERIALS AND METHODS 

This section presents the proposed AMC system design. To 
evaluate the proposed system, RadioML 2016.10A was used, 
which is an RF dataset for machine learning developed by 
Deepsig Inc. [12]. 

A. System Model 

The system begins with preprocessing of raw signal data, 
adapting it into a suitable format for CNN-based analysis. The 
neural network is designed to capture and understand intricate 
modulation patterns. The training process involves optimizing 
the network's parameters [13]. The proposed system model was 
evaluated using standard metrics [14, 15]. 

 

 

Fig. 1.  Digital communication model. 

B. Mathematical Model 

This section describes the mathematical modeling of IQ 
data using BPSK and QPSK modulation schemes, as well as 
the noise characteristics of the RadioML 2016.10A dataset. 
The representation of complex baseband signals, noise 
modeling, and the impact of Signal-to-Noise Ratio (SNR) are 
discussed in detail. 

1) Complex Baseband Signal Representation 

In a digital communication system, the transmitted signal is 
represented using In-phase (I) and Quadrature (Q) components, 
which form the complex baseband signal. Mathematically, this 
signal can be expressed as: 

���� � ���� � �	���    (1) 

where ���� is the complex baseband signal, ���� is the in-phase 
component of the signal, and 	���  is the quadrature-phase 
component of the signal. 

2) Binary Phase Shift Keying (BPSK) 

In BPSK, each symbol represents a single bit, resulting in 
two possible phase states: 0 and  � . The transmitted BPSK 
signal can be represented as: 

���� � �
���2���� � ���   (2) 

where �  is the amplitude of the signal, ��  is the carrier 
frequency, and � ∈ �0,1�  is the bit being transmitted. In 
complex form, the BPSK signal is expressed as: 

���� � � ∗ �1 � 2�� � ��   (3) 

where  � is a constant amplitude and � is the binary symbol (0 
or 1), mapped to either ��  or �� . This representation 

simplifies to a purely real signal with 	 � 0 , meaning the 
modulation only affects the in-phase component. 

3) Quadrature Phase Shift Keying (QPSK) 

In QPSK, each symbol represents 2 bits, allowing four 

possible phase shifts: 0, 
�

 
,  �  and 

!�

 
. The QPSK signal is 

represented as: 

���� � �
���2���� � "#� �  ���$��2���� � "#� (4) 

where A is the signal amplitude and "# ∈ �0,
�

 
, �,

!�

 
� represents 

the phase corresponding to the transmitted symbol. The 
complex representation for QPSK is given by: 

���� � ������ � �	����   (5) 

where ����, 	��� ∈ ��1� represent the in-phase and quadrature 
components. Each 2-bit pair is mapped to a unique phase shift, 
such as: 

 00 → � � �� 

 01 → �� � �� 

 10 → � � �� 

 11 → �� � �� 

This mapping enables QPSK to achieve higher data rates 
compared to BPSK by encoding more bits per symbol. 

4) Noise Model 

In real-world communication systems, signals are subject to 
noise, which affects their integrity. The RadioML 2016.10A 
dataset introduces noise in the form of Additive White 
Gaussian Noise (AWGN) to simulate different SNRs. The 
received signal is thus modeled as: 

&��� � ���� � '���    (6) 

where &��� is the received noisy signal, ���� is the transmitted 
modulated signal, and '��� is the noise component, modeled 
as a complex Gaussian random variable. The noise '���  is 
decomposed into its in-phase and quadrature components: 

'��� � '(��� � �')���   (7) 

where '(��� is the noise affecting the in-phase component ���� 

and ')���  is the noise affecting the quadrature component 

	���. 

Both  '(��� and ')���  are drawn from a Gaussian 

distribution with mean zero and variance * . The noise 
components are independent and identically distributed. 

5) Signal-to-Noise Ratio (SNR) 

SNR is a key metric that quantifies the relative power of the 
signal compared to the noise power. It is defined as: 

+,- �
./

.0
     (8) 

where 12 is the average power of the transmitted signal ����, 
and 13  is the average power of the noise '��� . In discrete 
form, the SNR is given by: 
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+,- �
4�|2�6�|7�

4�|3�6�|7�
     (9) 

The RadioML 2016.10A dataset includes data at various 
SNR levels, ranging from -20 to 18 dB, to simulate different 
channel conditions. As the SNR decreases, the impact of noise 
becomes more significant, making it challenging for a classifier 
to distinguish between different modulation types. 

6) Received Signal Representation 

After adding noise, the received signals for BPSK and 
QPSK can be written as in (10) and (11), respectively. 

&��� � �� � '(���    (10) 

In this case, the noise is added directly to the in-phase 
component of the signal. 

&��� � ����� � '(���� � ��	��� � ')���� (11) 

For QPSK, noise affects both the in-phase and quadrature-
phase components equally [16, 17]. 

C. Proposed Architecture 

Figure 2 shows the proposed feature image-based AMC 
architecture. The AMC part consists of a feature extractor and a 
CNN classifier. When the AMC scheme has received the 
signals, the feature extractor extracts the features and 
transforms them into an image. Then, CNN classifies the 
modulation type based on previous learning [18]. 

 

 
Fig. 2.  CNN-based AMC architecture. 

Initially, the dataset is divided into training and testing sets 
with an 80:20 split. Preprocessing steps convert the raw signal 
data into spectrograms. These spectrograms are then 
normalized to a consistent range, typically between 0 and 1, to 
facilitate stable model training. Following normalization, the 
spectrogram images are reshaped to a uniform dimension, 
ensuring consistency in input size and format for the neural 
network.  

Once preprocessing is complete, the training phase involves 
feeding the augmented spectrograms into the neural network, 
where the model learns to classify BPSK and QPSK signals 
through backpropagation and optimization algorithms. During 
training, the model's performance is monitored to prevent 
overfitting using methods such as early stopping and dropout 
[19, 20]. 

 

 
Fig. 3.  Methodology. 

III. SIMULATIONS AND DISCUSSION 

A. Description of Experimental Dataset 

The RadioML 2016.10A dataset was used to evaluate the 
performance of the proposed model, which comprises 220,000 
samples with 11 different modulation types. The dataset was 
generated using a software-defined radio to perform I/Q dual-
channel sampling, with a data length of 128. The SNR of the 
samples ranges from -20 dB to 18 dB, with a step size of 2 dB. 
The channel noise is white Gaussian noise. The dataset 
includes various modulation types, such as BPSK, QPSK, 
8PSK, AM-DSB, AM-SSB, CPFSK, GFSK, PAM4, QAM16, 
QAM64, and WBFM. The sampling frequency is set at 200 
KHz, with a sample length of 128. The dataset includes 
sampling rate and carrier frequency offsets with standard 
deviations of 0.01 Hz and maximum offsets of 50 and 500 Hz, 
respectively. Table I summarizes dataset parameters and 
components [21, 22]. 

TABLE I.  DATASET PARAMETERS AND COMPONENTS 

RadioML 2016.10A 

Parameter Value 

Sampling frequency 200 KHz 

Sampling rate offset standard 

deviation 
0.01 Hz 

Maximum sampling rate 

offset 
50 Hz 

Carrier frequency offset 

standard deviation 
0.01 Hz 

Maximum carrier frequency 

offset 
500 Hz 

Sample length 128 

SNR range -20 to 18 dB 

Modulations 

8PSK, AM-DSB, AM-SSB, 

BPSK, CPFSK, GFSK, PAM4, 

QAM16, QAM64, QPSK, WBFM 
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Fig. 4.  DeepSig Inc. RadioML 2016.10A dataset structure. 

Figure 5 illustrates BPSK and QPSK signals at various 
SNR levels (-20, 0, and 18 dB). These spectrograms visually 
demonstrate how signal clarity improves with higher SNR, 
providing a critical link between the dataset's quantitative 
parameters and their practical impact on signal quality. 

 

 
Fig. 5.  BPSK and QPSK spectrograms for different SNRs. 

B. Proposed Models 

CNNs are particularly influential in image processing due 
to their unique architecture. In contrast to traditional fully 
connected networks, CNNs exhibit distinctive characteristics 
that contribute to their efficacy. Local connection entails that 
each neuron is connected to only a small subset of neurons in 
the preceding layer, significantly reducing the number of 
parameters. Weight sharing allows a set of connections to share 
the same weight, eliminating the need for individual weights 
for each connection and further reducing parameters. Lastly, 
downsampling, achieved through the pooling layer, decreases 
the number of samples per layer, diminishing parameters while 
concurrently enhancing model robustness [23, 24]. 

1) AMC-CNN Model 

The architecture, presented in Figure 6, starts with three 
convolutional layers, each characterized by a Rectified Linear 
Unit (ReLU) activation function, and the network progressively 
reduces spatial dimensions through MaxPooling layers. The 
flattened output is fed into fully connected layers with 128 and 
64 neurons, each employing ReLU activation functions, 
culminating in an output layer with 2 neurons and a Softmax 
activation function suitable for multiclass classification tasks. 
The model is compiled using the Adam optimizer and 
categorical cross-entropy loss [25]. The training was performed 
with a batch size of 100 over 100 epochs and a validation split 
of 20%. 

 

Fig. 6.  AMC-CNN implementation. 

2) AMC-AlexNet Model 

AlexNet is a CNN, presented in Figure 7, that is 8 layers 
deep, featuring convolutional layers with varying filter sizes 
and max-pooling for spatial reduction, followed by a flattening 
step. Subsequently, three fully connected layers are integrated 
with decreasing neuron counts. The output layer, designed for 
multiclass classification, consists of 2 neurons utilizing a 
softmax activation function. The model is trained using the 
Adam optimizer and categorical cross-entropy loss, with the 
training history tracked over 100 epochs and a batch size of 
100, including a validation split of 20% [26, 27]. 
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Fig. 7.  AMC-Alexnet implementation. 

C. Experimental procedure 

1) Categorical Cross-Entropy 

Categorical cross-entropy [24] is a commonly used loss 
function in multiclass classification problems. It measures the 
difference between the true distribution (labels) and the 
predicted distribution (model outputs). For a single instance, 
the categorical cross-entropy loss is defined as: 

8 � � ∑ :#log �>#�?
#@A     (4) 

where , is the number of classes, :#  is the binary indicator (0 
or 1) if class label $ is the correct classification, and >#  is the 
predicted probability of class $. In practice, categorical cross-
entropy is used to train models to produce probabilities that 
closely match the true class distributions, minimizing the loss 
to improve classification accuracy. 

2) Hyperparameters 

Hyperparameters included learning rate, batch size, number 
of epochs, and the choice of optimizer and loss function. Table 
II summarizes these critical hyperparameters, providing a 
foundation for effective model development and tuning. 

TABLE II.  HYPERPARAMETERS 

Hyperparameters 

Parameter CNN Alexnet 

Optimizer Adam Adam 

Epochs 100 100 

Batch size 100 100 

Loss function 
Categorical cross-

entropy 

Categorical cross-

entropy 

Learning rate 0.001 0.001 

Total parameters 
7769474  

(29.64 MB) 

45605562  

(173.97 MB) 

Trainable parameters 
7769474  

(29.64 MB) 

45604346  

(173.97 MB) 

Non-trainable parameters 0 (0.00 Byte) 1216 (4.75 KB) 

 

3) AMC-CNN Training Results 

The CNN classifier demonstrated substantial improvement 
over 100 epochs. The training loss decreased from 0.6978 to 
0.0001, while the accuracy increased from 52.65% to 100%. 
The validation loss started at 0.6627 and reached 3.4710, with 
the validation accuracy increasing from 58.92% to 75.50%. 
These results indicate the model's strong learning capability 
and effective training progression. The final training accuracy 
of 100% suggests that the model effectively captured the signal 
characteristics. The validation accuracy stabilizing at 75.50% 
reflects consistent performance on unseen data. 

 

 

Fig. 8.  Model accuracy. 

 

Fig. 9.  Model loss. 
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Fig. 10.  Training and validation accuracy. 

 

Fig. 11.  Training and validation loss. 

4) AMC-Alexnet Training Results 

The training and validation performance of the model over 
100 epochs showed significant improvement. Training loss was 
reduced from 1.85 to 0.31, and training accuracy increased 
from 28.44% to 84.97%. The validation loss initially 
fluctuated, peaking at 3.73, and eventually stabilized at 3.07. 
Meanwhile, the validation accuracy improved from 29.19% to 
43.48%. These results indicate effective learning in training. 

D. Model Testing 

This study systematically assessed the performance of the 
proposed model across a diverse range of SNRs, spanning from 
-20 to 18 dB. This testing method aimed to evaluate the 
robustness of the model in the presence of varying levels of 
noise. By examining key metrics such as accuracy across this 
broad range, valuable insights can be gained into the network's 
ability to handle both low and high SNR scenarios. 

E. Analysis of Results 

1) Performance Metrics 

The performance of modulation classification is usually 
measured by the accuracy metric, which can be generally 
calculated as follows: 

�

B&C
: �
D.ED?

D.ED?EF.EF?
   (5) 

where TP, TN, FP, and FN denote True Positives, True 
Negatives, False Positives, and False Negatives, respectively. 
The results can be reported using confusion matrices, which are 
commonly used in the machine learning domain [28, 29]. 

 

2) SNR Range Effect in Test Results 

The SNR is critical in AMC, as it affects the classification 
accuracy, and low SNRs challenge the discrimination of similar 
modulations. Testing across SNR levels ensures model 
robustness in real-world conditions. It also enables fair 
benchmarking and highlights areas for optimization in noisy 
environments. Proper SNR selection ensures reliable 
performance evaluation [30, 31]. 

Choosing an SNR range from -20 to 18 dB is vital, as it 
covers extreme noise conditions to near-ideal scenarios. Low 
SNRs (e.g., -20 dB) test the model's ability to classify under 
heavy noise, while higher SNRs (e.g., 18 dB) evaluate 
performance with clearer signals. 

3) AMC-CNN Testing Results 

The confusion matrix, shown in Figure 12, reveals that the 
CNN accurately classified 1584 BPSK and 1467 QPSK signals 
while misclassifying 436 BPSK as QPSK and 506 QPSK as 
BPSK. This indicates a high classification accuracy but also 
highlights the presence of some misclassification errors 
between the two signal types. The Probability Of Detection 
(POD) generally increases as the SNR improves. At lower SNR 
values, the POD fluctuated but started to consistently increase 
above 50% as SNR reached -4 dB. The CNN achieved over 
90% POD at 0 dB and maintained high accuracy (95-98%) for 
SNR values above 10 dB. 

4) AMC-Alexnet Testing Results 

The AlexNet model demonstrated similar performance. 
Both models exhibited proficiency in signal classification with 
minor differences in misclassification rates. The transfer 
learning application of AlexNet for BPSK and QPSK signal 
classification shows a POD increase with increasing SNR. 
Initially fluctuating around 50% at low SNR values, it 
improved considerably from -6 dB onward. Exceeding 90% at 
0 dB and 98% at 2 dB, it maintained robust accuracy (95-99%) 
for SNRs above 10 dB. 

 

 
Fig. 12.  Confusion matrices. 
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Fig. 13.  Probability Of Detection (POD) vs. SNR. 

5) Performance Metrics Comparison with Prior Works 

Table IIΙ provides a performance comparison of different 
automatic modulation recognition methods. 

TABLE III.  PERFORMANCE METRICS COMPARISON 

Ref. Model  Modulations  Results 

[32] 4-layer CNN  11 
80% at 0 dB 

<60% at -5 dB 

[33] 

CNNs :  

AlexNet  

VGG16  

VGG19  

Resnet18  

07  

At 5 dB: 

82% 

86% 

87% 

91% 

[34] BiLSTM  
06 Radar 

Waveforms  
83% at 0 dB 

Proposed CNN 2 

97.5 % at 6 dB 

91.5% at 0 dB 

64% at -4 dB 

Proposed Alexnet 2 

95.5 % at 6 dB 

93.5% at 0 dB 

71.5% at -4 dB 

 
These results clearly demonstrate that advanced models, 

such as CNN-based architectures, achieve higher accuracy 
compared to traditional methods such as BiLSTM, especially at 
challenging SNR levels. The CNN-based model achieved 
97.5% accuracy at 6 dB, 91.5% at 0 dB, and maintained 
competitive results at -4 dB, showcasing robustness even in 
low-SNR scenarios. Similarly, the AlexNet-based model 
showed strong results.  

IV. CONCLUSION 

The proposed models demonstrated superior performance 
in AMC, significantly outperforming existing approaches under 
various SNR conditions. A key contribution of this research is 
the targeted training approach, which focuses on resolving 
confusion between closely spaced modulations, such as BPSK 
and QPSK, that share similar spectral properties. Addressing 
these challenging classes enhances the model's ability to 
differentiate between them, leading to improved overall 
classification accuracy. Future work will explore broader 
modulation schemes and real-world datasets to further refine 
the models, ensuring their practical applicability in dynamic 
spectrum access scenarios, particularly for V2X 
communications, where reliable data transmission is crucial in 
challenging wireless environments. Additionally, integrating 
these models into a Multi-Task Learning (MTL) framework 

could further enhance their ability to distinguish between 
confusing modulation classes, improving overall performance. 

ACKNOWLEDGMENT 

The authors declare no competing financial interests or 
personal relationships that could have appeared to influence the 
work reported in this paper. 

REFERENCES 

[1] N. El-Haryqy, Z. Madini, Y. Zouine, and A. Kharbouche, "A Survey on 
Automatic Signal Detection Using Deep Learning," in 2023 9th 
International Conference on Optimization and Applications (ICOA), 
AbuDhabi, United Arab Emirates, Oct. 2023, pp. 1–6, 
https://doi.org/10.1109/ICOA58279.2023.10308833. 

[2] K. Kimani and M. Njiraine, "Cognitive Radio Spectrum Sensing 
Mechanisms in TV White Spaces: A Survey," Engineering, Technology 
& Applied Science Research, vol. 8, no. 6, pp. 3673–3680, Dec. 2018, 
https://doi.org/10.48084/etasr.2442. 

[3] A. Kharbouche, Z. Madini, and Y. Zouine, "Performance improvements 
of a VLC system, in a V2X context, using a different multiplexing 
technique," TELKOMNIKA (Telecommunication Computing Electronics 
and Control), vol. 21, no. 4, pp. 725–735, Aug. 2023, 
https://doi.org/10.12928/telkomnika.v21i4.24042. 

[4] A. Kharbouche, Z. Madini, Y. Zouine, and N. El-Haryqy, "Signal 
demodulation with Deep Learning Methods for visible light 
communication," in 2023 9th International Conference on Optimization 
and Applications (ICOA), AbuDhabi, United Arab Emirates, Oct. 2023, 
pp. 1–5, https://doi.org/10.1109/ICOA58279.2023.10308822. 

[5] H. Shahinzadeh, A. Mahmoudi, A. Asilian, H. Sadrarhami, M. Hemmati, 
and Y. Saberi, "Deep Learning: A Overview of Theory and 
Architectures," in 2024 20th CSI International Symposium on Artificial 
Intelligence and Signal Processing (AISP), Babol, Iran, Feb. 2024, pp. 
1–11, https://doi.org/10.1109/AISP61396.2024.10475265. 

[6] H. Huang, J. Yang, H. Huang, Y. Song, and G. Gui, "Deep Learning for 
Super-Resolution Channel Estimation and DOA Estimation Based 
Massive MIMO System," IEEE Transactions on Vehicular Technology, 
vol. 67, no. 9, pp. 8549–8560, Sep. 2018, https://doi.org/10.1109/ 
TVT.2018.2851783. 

[7] X. Zhao, X. Li, and Z. Zhang, "Joint Structural Learning to Rank with 
Deep Linear Feature Learning," IEEE Transactions on Knowledge and 
Data Engineering, vol. 27, no. 10, pp. 2756–2769, Jul. 2015, 
https://doi.org/10.1109/TKDE.2015.2426707. 

[8] Y. Li, X. Cheng, and G. Gui, "Co-Robust-ADMM-Net: Joint ADMM 
Framework and DNN for Robust Sparse Composite Regularization," 
IEEE Access, vol. 6, pp. 47943–47952, 2018, https://doi.org/10.1109/ 
ACCESS.2018.2867435. 

[9] C. S. Park, J. H. Choi, S. P. Nah, W. Jang, and D. Y. Kim, "Automatic 
Modulation Recognition of Digital Signals using Wavelet Features and 
SVM," in 2008 10th International Conference on Advanced 
Communication Technology, Gangwon-Do, South Korea, Feb. 2008, pp. 
387–390, https://doi.org/10.1109/ICACT.2008.4493784. 

[10] Z. Md. Fadlullah, F. Tang, B. Mao, J. Liu, and N. Kato, "On Intelligent 
Traffic Control for Large-Scale Heterogeneous Networks: A Value 
Matrix-Based Deep Learning Approach," IEEE Communications Letters, 
vol. 22, no. 12, pp. 2479–2482, Sep. 2018, https://doi.org/10.1109/ 
LCOMM.2018.2875431. 

[11] F. Tang et al., "On Removing Routing Protocol from Future Wireless 
Networks: A Real-time Deep Learning Approach for Intelligent Traffic 
Control," IEEE Wireless Communications, vol. 25, no. 1, pp. 154–160, 
Feb. 2018, https://doi.org/10.1109/MWC.2017.1700244. 

[12] T. J. O’Shea and N. West, "Radio Machine Learning Dataset Generation 
with GNU Radio," Proceedings of the GNU Radio Conference, vol. 1, 
no. 1, Sep. 2016. 

[13] F. Meng, P. Chen, L. Wu, and X. Wang, "Automatic Modulation 
Classification: A Deep Learning Enabled Approach," IEEE Transactions 
on Vehicular Technology, vol. 67, no. 11, pp. 10760–10772, Aug. 2018, 
https://doi.org/10.1109/TVT.2018.2868698. 



Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 19925-19932 19932  
 

www.etasr.com Ouamna et al.: Deep Learning-assisted Automatic Modulation Classification using Spectrograms 

 

[14] W. Xie, S. Hu, C. Yu, P. Zhu, X. Peng, and J. Ouyang, "Deep Learning 
in Digital Modulation Recognition Using High Order Cumulants," IEEE 
Access, vol. 7, pp. 63760–63766, 2019, https://doi.org/10.1109/ 
ACCESS.2019.2916833. 

[15] Y. Wang, M. Liu, J. Yang, and G. Gui, "Data-Driven Deep Learning for 
Automatic Modulation Recognition in Cognitive Radios," IEEE 
Transactions on Vehicular Technology, vol. 68, no. 4, pp. 4074–4077, 
Apr. 2019, https://doi.org/10.1109/TVT.2019.2900460. 

[16] M. W. Aslam, Z. Zhu, and A. K. Nandi, "Automatic Modulation 
Classification Using Combination of Genetic Programming and KNN," 
IEEE Transactions on Wireless Communications, vol. 11, no. 8, pp. 
2742–2750, Aug. 2012, https://doi.org/10.1109/TWC.2012.060412. 
110460. 

[17] V. S. Doan, T. Huynh-The, C. H. Hua, Q. V. Pham, and D. S. Kim, 
"Learning Constellation Map with Deep CNN for Accurate Modulation 
Recognition," in GLOBECOM 2020 - 2020 IEEE Global 
Communications Conference, Taipei, Taiwan, Dec. 2020, pp. 1–6, 
https://doi.org/10.1109/GLOBECOM42002.2020.9348129. 

[18] T. J. O’Shea, T. Roy, and T. C. Clancy, "Over-the-Air Deep Learning 
Based Radio Signal Classification," IEEE Journal of Selected Topics in 
Signal Processing, vol. 12, no. 1, pp. 168–179, Oct. 2018, 
https://doi.org/10.1109/JSTSP.2018.2797022. 

[19] S. Tridgell, D. Boland, P. H. W. Leong, R. Kastner, A. Khodamoradi, 
and Siddhartha, "Real-time Automatic Modulation Classification using 
RFSoC," in 2020 IEEE International Parallel and Distributed 
Processing Symposium Workshops (IPDPSW), New Orleans, LA, USA, 
May 2020, pp. 82–89, https://doi.org/10.1109/IPDPSW50202.2020. 
00021. 

[20] J. Kaiser, H. Mostafa, and E. Neftci, "Synaptic Plasticity Dynamics for 
Deep Continuous Local Learning (DECOLLE)," Frontiers in 
Neuroscience, vol. 14, May 2020, https://doi.org/10.3389/fnins.2020. 
00424. 

[21] A. Tsakmalis, S. Chatzinotas, and B. Ottersten, "Modulation and Coding 
Classification for Adaptive Power Control in 5G Cognitive 
Communications," in 2014 IEEE 15th International Workshop on Signal 
Processing Advances in Wireless Communications (SPAWC), Toronto, 
ON, Canada, Jun. 2014, pp. 234–238, https://doi.org/10.1109/SPAWC. 
2014.6941505. 

[22] O. F. Abd-Elaziz, M. Abdalla, and R. A. Elsayed, "Deep Learning-Based 
Automatic Modulation Classification Using Robust CNN Architecture 
for Cognitive Radio Networks," Sensors, vol. 23, no. 23, Jan. 2023, Art. 
no. 9467, https://doi.org/10.3390/s23239467. 

[23] F. Wang, T. Shang, C. Hu, and Q. Liu, "Automatic Modulation 
Classification Using Hybrid Data Augmentation and Lightweight Neural 
Network," Sensors, vol. 23, no. 9, Jan. 2023, Art. no. 4187, 
https://doi.org/10.3390/s23094187. 

[24] K. P. Murphy, Machine Learning: A Probabilistic Perspective. MIT 
Press, 2012. 

[25] J. A. Snoap, D. C. Popescu, J. A. Latshaw, and C. M. Spooner, "Deep-
Learning-Based Classification of Digitally Modulated Signals Using 
Capsule Networks and Cyclic Cumulants," Sensors, vol. 23, no. 12, Jan. 
2023, Art. no. 5735, https://doi.org/10.3390/s23125735. 

[26] A. Kumar, S. Majhi, G. Gui, H. C. Wu, and C. Yuen, "A Survey of 
Blind Modulation Classification Techniques for OFDM Signals," 
Sensors, vol. 22, no. 3, Jan. 2022, Art. no. 1020, https://doi.org/10.3390/ 
s22031020. 

[27] S. Peng, H. Jiang, H. Wang, H. Alwageed, and Y.-D. Yao, "Modulation 
classification using convolutional Neural Network based deep learning 
model," in 2017 26th Wireless and Optical Communication Conference 
(WOCC), Newark, NJ, USA, Apr. 2017, pp. 1–5, https://doi.org/ 
10.1109/WOCC.2017.7929000. 

[28] P. Dileep, D. Das, and P. K. Bora, "Dense Layer Dropout Based CNN 
Architecture for Automatic Modulation Classification," in 2020 National 
Conference on Communications (NCC), Kharagpur, India, Feb. 2020, 
pp. 1–5, https://doi.org/10.1109/NCC48643.2020.9055989. 

[29] T. Wang, G. Yang, P. Chen, Z. Xu, M. Jiang, and Q. Ye, "A Survey of 
Applications of Deep Learning in Radio Signal Modulation 
Recognition," Applied Sciences, vol. 12, no. 23, Jan. 2022, Art. no. 
12052, https://doi.org/10.3390/app122312052. 

[30] V. Pallam, H. Khan, S. R. Surampudi, and G. Immadi, "Reduced Kernel 
PCA Model for Nonlinear Spectrum Sensing in Cognitive Radio 
Network," Journal of The Institution of Engineers (India): Series B, Jun. 
2024, https://doi.org/10.1007/s40031-024-01089-w. 

[31] P. Venkatapathi, H. Khan, S. S. Rao, and G. Immadi, "Cooperative 
Spectrum Sensing Performance Assessment using Machine Learning in 
Cognitive Radio Sensor Networks," Engineering, Technology & Applied 
Science Research, vol. 14, no. 1, pp. 12875–12879, Feb. 2024, 
https://doi.org/10.48084/etasr.6639. 

[32] Y. Zeng, M. Zhang, F. Han, Y. Gong, and J. Zhang, "Spectrum Analysis 
and Convolutional Neural Network for Automatic Modulation 
Recognition," IEEE Wireless Communications Letters, vol. 8, no. 3, pp. 
929–932, Jun. 2019, https://doi.org/10.1109/LWC.2019.2900247. 

[33] R. Liu, Y. Guo, and S. Zhu, "Modulation Recognition Method of 
Complex Modulation Signal Based on Convolution Neural Network," in 
2020 IEEE 9th Joint International Information Technology and Artificial 
Intelligence Conference (ITAIC), Chongqing, China, Dec. 2020, pp. 
1179–1184, https://doi.org/10.1109/ITAIC49862.2020.9338875. 

[34] S. G. Bhatti and A. I. Bhatti, "Radar Signals Intrapulse Modulation 
Recognition Using Phase-Based STFT and BiLSTM," IEEE Access, vol. 
10, pp. 80184–80194, 2022, https://doi.org/10.1109/ACCESS.2022. 
3195273. 

 


